Econometrics

Jerzy Mycielski

2010

Topics

- OLS for conditional model
- Convergence in probability
- Limit theorems
- Law of Large Numbers (LLN)
- Central Limit Theorem (CLT)
- Cramer theorem
- Asymptotic properties of estimators
- consistency
- asymptotic normality
- Simultaneity

Convergence in probability

- Convergence in probability is denoted as

$$
a_{n} \xrightarrow{p} a
$$

or

$$
\operatorname{plim}\left(a_{n}\right)=a
$$

- Convergence in distribution is denoted as

$$
a_{n} \xrightarrow{D} a
$$

Convergence in probability

Density of \bar{x}, where $x_{i} \sim N(0,1)$

Uniform distribution
Uniform distribution - density function of $\sqrt{n} \frac{\bar{x}-\mu}{\sigma^{2}}$

- If the assumption that

$$
\operatorname{Cov}\left(\mathbf{x}_{i}, \varepsilon_{i}\right)=\mathrm{E}\left(\mathbf{x}_{i}^{\prime} \varepsilon_{i}\right)=0
$$

is invalid we say that in the model we have simultaneity problem

- In such a case OLS estimator is inconsistent
- This implies that in such a case even for vary large samples our estimates of β could be far away from parameters!

Example

(omitted variable) Variable x_{3} is omitted in the model:

$$
y_{i}=\beta_{1}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\varepsilon_{i}
$$

and $\operatorname{Cov}\left(x_{2 i}, x_{3 i}\right) \neq 0$, so that in the model

$$
y_{i}=\beta_{1}+\beta_{2} x_{2 i}+\eta_{i}
$$

where $\eta_{i}=\beta_{3} x_{3 i}+\varepsilon_{i}$ and covariance $\operatorname{Cov}\left(\eta_{i}, x_{2 i}\right) \neq 0 \Longrightarrow$ simultaneity

Example

(feedback) In simplified Keynesian model

$$
\begin{aligned}
& C_{t}=a+b Y_{t}+\varepsilon_{t} \\
& Y_{t}=C_{t}+I_{t}
\end{aligned}
$$

C_{t} is consumption, Y_{t} is $G D P$ and I_{t} investment. Substituting for C_{t} in the second equation

$$
Y_{t}=a+b Y_{t}+\varepsilon_{t}+I_{t}
$$

Solving for Y_{t} :

$$
Y_{t}=\frac{a}{1-b}+\frac{1}{1-b} I_{t}+\frac{\varepsilon_{t}}{1-b}
$$

Example (cont.)

Assume, that ε_{t} and I_{t} are not correlated, then

$$
\begin{aligned}
\operatorname{Cov}\left(\varepsilon_{t}, Y_{t}\right) & =\operatorname{Cov}\left(\varepsilon_{t}, \frac{a}{1-b}+\frac{1}{1-b} I_{t}+\frac{\varepsilon_{t}}{1-b}\right) \\
& =\frac{1}{1-b} \operatorname{Var}\left(\varepsilon_{t}\right) \neq 0
\end{aligned}
$$

Simultaneity problem in this case is related to the fact that C_{t} depends on Y_{t} but at the same time Y_{t} depends on C_{t} (feedback)

