Econometrics

Jerzy Mycielski

2010

Jerzy Mycielski () Econometrics

Omitted and insignificant variables

Two models:

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{u} \tag{1}$$

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon} \tag{2}$$

- Two cases:
 - omitted variables: we estimate model (1) but in reality model (2) is valid $(oldsymbol{eta}_2
 eq \mathbf{0})$
 - insignificant variables: we estimate model (2) but model (1) is valid $(\beta_2 = \mathbf{0})$.
- Omitted variables problem has much more serious consequences that insignificant variables problem.

Jerzy Mycielski () Econometrics 2010 2 / 34

Example

The researcher wants to verify the effectivity of some drug. He divided randomly the sample of patients into the treated group which was given the drug and the control group which was given placebo. Then the researcher evaluated the change of health of the treated and untreated patients according. It is known however, that the measure of health, which was used, is influenced by some additional characteristics of patient such as age. Is possible find an unbiased estimate of the effect of the drug if we omit these additional characteristics?

Jerzy Mycielski () Econometrics 2010 3 / 34

Answer: Yes, if the sample was really randomly divided into treated and untreated groups. In such a case there is no correlations between characteristics omitted in the regression and the participation dummy $Corr_{X_1X_2}=0$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Example

Correlation between the logarithm of wage and interviewer number

Regression results

logNETPAY					[95% Conf.	
INTV	.0016346	.0000989	16.53	0.000	.0014408	.0018284

Regression with voivodships dummy and dummy for the city size Part of the regression table

	Coef.				[95% Conf.	=
INTV	0002166	.0001482	-1.46	0.144	0005071	.0000738
_IV0I1_3	1495124	.0428622	-3.49	0.000	2335268	0654981
_IV0I1_97	1219227	.0275238	-4.43	0.000	1758722	0679731
_ITOWN2_1	0789742	.019422	-4.07	0.000	1170433	040905
_ITOWN2_9	2471119	.0166571	-14.84	0.000	2797616	2144623
_cons	5.90414	.0154814	381.37	0.000	5.873795	5.934485

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

- Variable related to interviewer number is now insignificant!
- Explanation: correlation between the voivodship number and city size (omitted variables) and the interviewer number.
- Regression of interviewer number on voivodship and city size dummies gives:

R-squared = 0.5861

Jerzy Mycielski () Econometrics 2010 7 / 34

The simplest case one omitted variable, one included variable

$$\mathrm{E}\left(\widetilde{\boldsymbol{\beta}}_{1}\right)-\boldsymbol{\beta}_{1}=\boldsymbol{\beta}_{2}\frac{\mathbf{s}_{\mathsf{x}_{2}}}{\mathbf{s}_{\mathsf{x}_{1}}}\boldsymbol{\rho}_{\mathsf{x}_{1}\mathsf{x}_{2}}$$

- omitted variable x_2 positively correlated with x_1 , coefficient β_2 positive coefficient β_1 overestimated
- omitted variable x_2 positively correlated with x_1 , coefficient β_2 negative coefficient β_1 underestimated
- omitted variable x_2 negatively correlated with x_1 , coefficient β_2 positive coefficient β_1 underestimated
- omitted variable x_2 negatively correlated with x_1 , coefficient β_2 negative coefficient β_1 overestimated
- These results are also often used in the context of multiple regression (although they are not exactly valid in this case), when the omitted variable is correlated with one variable included in the model

direction of the bias

Example

Simple linear model was build in which the number of children born in some area was explained by the number of storks living in the area. It was found that there is a significant relationship between these two variables. Does it imply that storks bring babies?

Jerzy Mycielski () Econometrics 2010 9 / 34

Answer: In Poland the birth rate is higher in the countryside than in the urban areas $(\beta_2>0)$. It is also the case that most storks are living on the countryside $(\rho_{x_1x_2}>0)$. Important variable related to whether the area in question is an urban area was omitted in the model. Positive estimate of the parameter for the variable number of storks is probably related to the omitted variable bias of the estimator $(E(b_1)=\beta_1+\beta_2\frac{s_{x_2}}{s_{x_1}}\rho_{x_1x_2}>0$ even if $\beta_1=0)$.

Jerzy Mycielski () Econometrics 2010 10 / 34

direction of the bias

Example

Experience and age

Dependence of log wage on experience

```
| lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] | exper| .0113283 .0006278 18.04 0.000 .0100975 .012559 | _cons | 7.36974 .0133627 551.52 0.000 7.343544 7.395935
```

direction of the bias

• Dependence of log wage on age and experience

lplaca					[95% Conf.	_
exper	.0058233	.0014101	4.13	0.000	.003059	.0085877
age	.0064003	.0014685	4.36	0.000	.0035214	.0092791
_cons	7.214572	.0380217	189.75	0.000	7.140037	7.289107

• Estimate of the coefficient for experience is much lower

Insignificant variables

- Insignificant variable problem: we estimate model (2) but $\beta_2 = \mathbf{0}$.
- We already know that for valid restrictions $\mathbf{H}\boldsymbol{\beta} = \mathbf{h}$, restricted estimator is unbiased and has smaller variance that unrestricted estimator estimator.
- We conclude that if the restriction $\beta_2 = \mathbf{0}$ is valid (model 1 is true) but we will not use this restriction in estimation (we will estimate model 2), then the estimator will be unbiased but inefficient.

Corollary

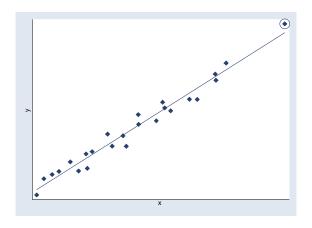
In the model with insignificant variables OLS estimator is inefficient, that is its variance is higher that the variance of estimator in the model without insignificant variables

Unusual observations and outliers

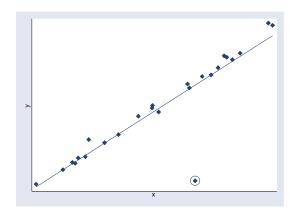
- We can have two cases:
 - observations which is unusual in the context of other observations
 - outlier (erroneous observation)

Jerzy Mycielski () Econometrics 2010 14 / 34

Unusual observation



Outlier



Differences between unusual observations and outliers

- Unusual observations is correct, outlier is erroneous
- Influence of unusual observations and outliers on the regression results is completely opposite:
 - Unusual observation has positive impact on:
 - ullet precision of the estimate of eta
 - fit of the model
 - Outlier has negative impact on
 - ullet precision of the estimate of eta eta
 - fit of the model

Jerzy Mycielski () Econometrics 2010 17 / 34

Differences between unusual observations and outliers

Example

We need to compare the profitability of two contracts: A and B. We have data consisting of 10 observations on internal rate of return (IRR) for each of the contacts:

A: {10, 8, 8, 9, 11, 10, 8, 9, 11, 10}

 $B: \{16, 15, 18, 17, 16, -80, 17, 16, 16, 17\}.$

Notice one unusual observations for contract B (it is related to the firm which bankrupted). Should we take into account this observation? Define the dummy variable B which take the value of 1 for contracts from group B.

Jerzy Mycielski () Econometrics 2010 18 / 34

Differences between unusual observations and outliers

Regression results with one observation omitted:

IRR					[95% Conf.	
_IB_1	7.155556	.4808912	14.88	0.000	6.140964 8.70171	8.170147

Regression results with all observations included:

IRR					[95% Conf.	
_IB_1	-3.5	10.66526	-0.33	0.747	-25.90688 -6.444057	18.90688

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

leverage

• In order to detect unusual observations we can use leverage statistics h_i

$$h_{i} = \delta'_{i} \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \delta_{i} = \delta'_{i} \mathbf{P}_{X} \delta_{i} = (\mathbf{P}_{X})_{ii}$$
$$= \mathbf{x}_{i} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}'_{i}$$

where $\delta_i = [0, \dots, 0, 1, 0 \dots, 0]'$ and $\mathbf{P}_X = \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'$.

- Properties of leverage:
 - for each model

$$0 \le h_i \le 1$$

• for a model with constant

$$\frac{1}{n} \leq h_i \leq 1$$

- observation can be considered unusual if $h_i > \frac{2k}{n}$
- Notice that h_i detect \mathbf{x}_i unusual in the context of other \mathbf{x} 's, it does not measure how well \mathbf{x}_i fits the model

standardized residuals

Variance of the vector of residuals is equal to:

$$\operatorname{Var}(\mathbf{e}) = \operatorname{Var}(\mathbf{M}_X \boldsymbol{\varepsilon}) = \mathbf{M}_X (\mathbf{I}\sigma^2) \mathbf{M}_X$$

= $\sigma^2 \mathbf{M}_X$

• The variance of residual e_i is equal to

$$Var(e_i) = Var(\delta_i'\mathbf{e}) = \sigma^2 \delta_i' \mathbf{M}_X \delta_i$$
$$= \sigma^2 (1 - \delta_i' \mathbf{P}_X \delta_i) = \sigma^2 (1 - h_i)$$

• Standardized residual is then given by

$$\widehat{e}_{i} = \frac{e_{i}}{\sqrt{\operatorname{Var}(e_{i})}} = \frac{e_{i}}{\sigma\sqrt{1-h_{i}}}$$

$$\approx \frac{e_{i}}{s\sqrt{1-h_{i}}}$$

• The impact of the observation on the regression results is especially large if e_i and h_i are both large

Cook distance

- The measure of the impact of one observation on regression fit is called Cook distance.
- It is based on difference between $\hat{\mathbf{y}}$ obtained from full sample and $\hat{\mathbf{y}}_{(i)}$ obtained from sample with *i*-th observation omitted:

$$CD_{i} = \frac{\left(\widehat{\mathbf{y}} - \widehat{\mathbf{y}}_{(i)}\right)'\left(\widehat{\mathbf{y}} - \widehat{\mathbf{y}}_{(i)}\right)}{Ks^{2}} = \frac{\widehat{\mathbf{e}}_{i}^{2}}{K} \frac{h_{i}}{1 - h_{i}}$$

• The observations with $CD_i > 0.5$ and especially these with $CD_i > 1$ should be verified.

Example

Dependence of spending for accommodation on income

Regression results (4111 observations)

lq					[95% Conf.	_
linc	.4087146	.0139339	29.33	0.000	.3813966	.4360326

Jerzy Mycielski () Econometrics 2010 23 / 34

Number $\hat{e} > 2$ is equal to 217 which is about 5% of the sample Ordered table for leverages 5

+					+
1	q	inc	r2st	lev	cook
-					
	375.9	16	3.582841	.0140365	.0911117
	414.84	23	3.4911	.0120339	.0740249
	400	47	2.904768	.0085492	.036313
	132.35	78.9	.5826743	.0064039	.0010943
	370.68	118	2.103206	.0049578	.0110109

Jerzy Mycielski () Econometrics 2010 24 /

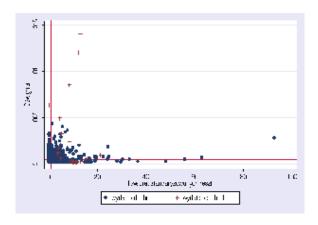
Ordered table for Cook distances

+	·				
	q	inc	r2st	lev	cook
-					
	3.67	16150	-9.631348	.0028882	.1314109
-	375.9	16	3.582841	.0140365	.0911117
	414.84	23	3.4911	.0120339	.0740249
-	400	47	2.904768	.0085492	.036313
	2.72	780	-7.928539	.0007519	.0233001

For all observations q > inc, this is unusual!

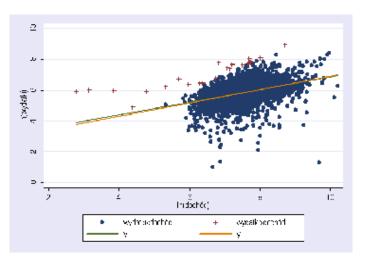
Jerzy Mycielski () Econometrics 2010 25 / 34

Standardized squares of residuals and leverages



Jerzy Mycielski () Econometrics 2010 26 / 34

Regression results for original sample and sample with omitted observations for which $q>\mathit{inc}$



Jerzy Mycielski () Econometrics 2010 27 / 34

Multicollinearity

- Multicollinearity strong correlation of explanatory variables
- Difficult to identify (separate) the influences of variables
- ullet x_1 and x_2 are growing "in most cases" together

Example

- y is growing with x_1 and x_2
- which of the variables "causes" the growth of y?

Jerzy Mycielski () Econometrics 2010 28 / 34

Perfect multicollinearity

- perfect multicollinearity columns of matrix X linearly dependent
- The identification of the influence of explanatory variables on dependent variable impossible

Example

Model on logarithms

- ullet dependent variables: national income Y_t
- explanatory variables: spending for education E_t , population P_t , spending for education per capita Z_t .

Jerzy Mycielski () Econometrics 2010 29 / 34

Perfect multicollinearity

Collinearity!

$$\ln\left(Z_{t}\right) = \ln\left(\frac{E_{t}}{P_{t}}\right) = \ln\left(E_{t}\right) - \ln\left(P_{t}\right)$$

Jerzy Mycielski () Econometrics 2010 30 / 34

Imperfect multicollinearity

Imperfect multicollinearity

- We are talking about imperfect multicollinearity if the correlation between exogenous variables are nonzero
- Imperfect multicollinearity is a rule rather than exceptions in nonexperimental data
- We can have a problem if the multicollinearity is strong

Jerzy Mycielski () Econometrics 2010 31 / 34

Imperfect multicollinearity

Imperfect multicollinearity

Example

dependence of wage on experience

Regression results

lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	-
exper_p1	.0821159	.0153068	5.36	0.000	.0521095	.1121223
exper_p2	006285	.0021507	-2.92	0.003	0105011	002069
exper_p3	.0002075	.0001237	1.68	0.093	0000349	.00045
exper_p4	-2.70e-06	3.09e-06	-0.87	0.382	-8.76e-06	3.35e-06
exper_p5	1.13e-08	2.77e-08	0.41	0.684	-4.31e-08	6.57e-08
_cons	7.18452	.033636	213.60	0.000	7.118583	7.250458

• Joint test for significance of exper⁵ and exper⁴

Imperfect multicollinearity VIF

VIF table

Variable	VIF	1/VIF
+-		
exper_p3	81085.22	0.000012
exper_p4	72099.95	0.000014
exper_p2	17923.53	0.000056
exper_p5	8874.86	0.000113
exper_p1	600.63	0.001665
+-		

Mean VIF | 36116.84

Imperfect multicollinearity

Imperfect multicollinearity

Regression without variable exper⁵

lwage	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
exper_p1	.0771847	.0093503	8.25	0.000	.058855	.0955145
exper_p2	0054865	.0008796	-6.24	0.000	0072108	0037621
exper_p3	.0001588	.0000308	5.16	0.000	.0000985	.0002191
exper_p4	-1.45e-06	3.57e-07	-4.07	0.000	-2.15e-06	-7.53e-07
_cons	7.191273	.0292561	245.80	0.000	7.133921	7.248624