Econometrics

Jerzy Mycielski

Warsaw University, Department of Economics

2009

3

イロト イヨト イヨト イヨト

Linear model

Hypothesis: there is a relationship between explained and explanatory variables

Example

Hypothesis: expected spendings for food in households of married workers with two children depends on their income. This hypothesis seems to be supported by data (GUS data from household budget survey).

income of	average spendings
household	for food
0 -1000	442
1000-1500	534
1500-2000	608
2000-2500	657
2500-3000	717
3000-	817
average	644
Average sl	hare of expenditure for food in income: 0.33 = • • = •

Jerzy Mycielski (Institute)

• Auxiliary hypothesis: relationship between explained and explanatory variables is linear (linear model):

$$y_i = x_{1i}\beta_1 + x_{2i}\beta_2 + \ldots + x_{Ki}\beta_K + \varepsilon_i$$
, for $i = 1, \ldots, N$

Example

Direction of dependence:

expenditure_i = $\beta_1 + \beta_2$ income_i + ε_i income_i = $\alpha_1 + \alpha_2$ expenditure_i + η_i

3 1 4 3 1

Example

It was found that there is a positive correlation between the ice-cream consumption and the number of drownings in a given day. Does it imply that after eating ice-cream it is not safe to swim?

Solution

More drownings happen in warm days as more people are swimming in such a day. For such days consumption of ice-cream is also higher.

Estrimation

• Estimates of parameters for two different samples for a model with known parameters $\beta_1 = 8$ and $\beta_2 = 1.5$ (Monte Carlo method)

Example

(cont.) Estimates of $\boldsymbol{\beta}$ is equal to $\mathbf{b} = \begin{bmatrix} 463 \\ 0.08 \end{bmatrix}$ Fitted values and residuals for the first observation:

$$\widehat{y}_1 = 463 + 0.08 \times 890.6 = 534.9$$

 $e_1 = 639.1 - 534.9 = 104.2$

Jerzy Mycielski (Institute)

Image: A matrix

<-> ₹ ∃ > < ∃ >

2009 8 / 20

OLS with constant and one explanatory variable

Example

variable	average	variance
q	644.18	46737
income	2262.34	1584300

Empirical covariance between variables is equal to 126211. Using derived formulas we obtain:

$$b_2 = rac{126211}{1584300} = 0.079664$$

 $b_1 = 644.18 - 0.079664 imes 2262.34 = 463.95$

Result of regression is usually reported with following table:

	q	Coefficient
	income	.079664
	constant	463.95
Jerzy Mycielski (Institute)	Ecc	onometrics

Example

Estimation of the model explaing the expenditure for food with income of household:

$$q_i = \beta_1 + \beta_2 inc_i + \varepsilon_i$$

э

Dependence between expenditure for food and income (data and regression line)

Jerzy Mycielski (Institute)

2009 11 / 20

Engle curve (data and estimated curve)

•
$$e_{inc} \approx \frac{0.8}{0.33} = 0.24$$

Jerzy Mycielski (Institute)

2009 12 / 20

Example ((cont) In the model for food expenditure)

$$q_i = \beta_1 + \beta_2 \mathsf{inc}_i + \varepsilon_i$$

y and **X** have following form:

$$\mathbf{y} = \begin{bmatrix} 639.09\\ 664.47\\ 467.55\\ \vdots \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & 890.6\\ 1 & 2300\\ 1 & 1814.5\\ \vdots & \vdots \end{bmatrix}$$

Notice: In model with constant first column of matrix **X** is column of ones.

Geometry of OLS

• $\mathbf{e} = \mathbf{y} - \widehat{\mathbf{y}}$ is perpendicular to \mathbf{X} !

Decomposition of the total sum of square

- One of the measures of variation is the sum of squares of variable around its mean
- We define following sum of squares:
 - Total Sum of Squares

$$TSS = (\mathbf{y} - \overline{\mathbf{y}})' (\mathbf{y} - \overline{\mathbf{y}}) = \sum_{i=1}^{N} (y_i - \overline{y})^2$$

where $\overline{\mathbf{y}} = \mathbf{I}\overline{y}$

• Explained Sum of Squares

$$\mathsf{ESS} = \left(\widehat{\mathbf{y}} - \overline{\widehat{\mathbf{y}}}\right)' \left(\widehat{\mathbf{y}} - \overline{\widehat{\mathbf{y}}}\right) = \sum_{i=1}^{N} \left(\widehat{y}_i - \overline{\widehat{y}}\right)^2$$

where $\overline{\widehat{\mathbf{y}}} = \mathbf{I}\overline{\widehat{y}}$.

• Residual Sum of Squares

$$RSS = \mathbf{e}'\mathbf{e} = \sum_{i=1}^{N} e_i^2$$

Decomposition of the total sum of squares in model with constant

$$TSS = ESS + RSS$$
Total variation + Unexpained variation

• Total variation can be decomposed into the part which can be expained with the model and the part which cannot be expained with the model

Source	e SS	df	MS			
Model	33631	553 1	3363	1553		
Residua	I 122705	284 3344	36694	.164		
Tota	l 156336	837 3345	46737.4	4701		
Number	of obs =	3346				
F(1, 39	97) =	916.54				
Prob >	F =	0.0000				
R-squar	ed =	0.2151				
Adj R-s	quared =	0.2149				
Root M	SE =	191.56				
q	Coef.	Std. Err.	t	P > t	[95% Conf	. Interval]
inc	.0796627	.0026314	30.27	0.000	.0745034	.0848219
_cons	463.9612	6.812147	68.11	0.000	450.6048	477.3176

メロト メポト メヨト メヨト

$$156336837 = 33631553 + 122705284$$
$$R^{2} = \frac{ESS}{TSS} = \frac{33631553}{156336837} = 0.2151$$

メロト メポト メヨト メヨト

Constrained maximisation

• result of minimization of $f(x_1, x_2)$ for unconstrained x_1, x_2 and unconstrained x_2 but $x_1 = 0$

Totaly random variable z_i was added to regression
R²

Model	RSS	R^2
$\overline{q_i = \beta_1 + \beta_2 inc_i + \varepsilon_i}$	122705284	.2151
$\underline{q_i} = \beta_1 + \beta_2 inc_i + \beta_3 z_i + \varepsilon_i$	122694775	.2152

• Adjusted measure:

$$\overline{R}^2 = 1 - rac{N-1}{N-K} \left(1 - R^2
ight)$$

• In previous model

Model	R^2	K	\overline{R}^2
$q_i = \beta_1 + \beta_2 \text{inc}_i + \varepsilon_i$.2151	2	.2149
$q_i = \beta_1 + \beta_2 \operatorname{inc}_i + \beta_3 z_i + \varepsilon_i$.2152	3	.2147