# Econometrics 

Jerzy Mycielski<br>Warsaw University, Department of Economics<br>2009

## Linear model

Hypothesis: there is a relationship between explained and explanatory variables

## Example

Hypothesis: expected spendings for food in households of married workers with two children depends on their income. This hypothesis seems to be supported by data (GUS data from household budget survey).

| income of <br> household | average spendings <br> for food |
| :--- | :--- |
| $0-1000$ | 442 |
| $1000-1500$ | 534 |
| $1500-2000$ | 608 |
| $2000-2500$ | 657 |
| $2500-3000$ | 717 |
| $3000-$ | 817 |
| average | 644 |

- Average share of expenditure for food in income: 0.33
- Auxiliary hypothesis: relationship between explained and explanatory variables is linear (linear model):

$$
y_{i}=x_{1 i} \beta_{1}+x_{2 i} \beta_{2}+\ldots+x_{K i} \beta_{K}+\varepsilon_{i}, \text { for } i=1, \ldots, N
$$

## Example

Direction of dependence:

$$
\begin{aligned}
\text { expenditure }_{i} & =\beta_{1}+\beta_{2} \text { income }_{i}+\varepsilon_{i} \\
\text { income }_{i} & =\alpha_{1}+\alpha_{2} \text { expenditure }_{i}+\eta_{i}
\end{aligned}
$$

## Example

It was found that there is a positive correlation between the ice-cream consumption and the number of drownings in a given day. Does it imply that after eating ice-cream it is not safe to swim?

## Solution

More drownings happen in warm days as more people are swimming in such a day. For such days consumption of ice-cream is also higher.

## Estrimation

- Estimates of parameters for two different samples for a model with known parameters $\beta_{1}=8$ and $\beta_{2}=1.5$ (Monte Carlo method)



## Ordinary Least Squares Method (OLS)

## Example

(cont.) Estimates of $\boldsymbol{\beta}$ is equal to $\mathbf{b}=\left[\begin{array}{l}463 \\ 0.08\end{array}\right]$
Fitted values and residuals for the first observation:

$$
\begin{aligned}
\hat{y}_{1} & =463+0.08 \times 890.6=534.9 \\
e_{1} & =639.1-534.9=104.2
\end{aligned}
$$

## Residuals



## OLS with constant and one explanatory variable

## Example

| variable | average | variance |
| :--- | :--- | :--- |
| q | 644.18 | 46737 |
| income | 2262.34 | 1584300 |

Empirical covariance between variables is equal to 126211. Using derived formulas we obtain:

$$
\begin{aligned}
& b_{2}=\frac{126211}{1584300}=0.079664 \\
& b_{1}=644.18-0.079664 \times 2262.34=463.95
\end{aligned}
$$

Result of regression is usually reported with following table:

| q | Coefficient |
| :--- | :--- |
| income | .079664 |
| constant | 463.95 |

## Example

Estimation of the model explaing the expenditure for food with income of household:

$$
q_{i}=\beta_{1}+\beta_{2} i n c_{i}+\varepsilon_{i}
$$

## Dependence between expenditure for food and income (data and regression line)



## Engle curve (data and estimated curve)



- $e_{\text {inc }} \approx \frac{0.8}{0.33}=0.24$


## Linear model - matrix notation

## Example ((cont) In the model for food expenditure)

$$
q_{i}=\beta_{1}+\beta_{2} \mathrm{inc}_{i}+\varepsilon_{i}
$$

$\mathbf{y}$ and $\mathbf{X}$ have following form:

$$
\mathbf{y}=\left[\begin{array}{c}
639.09 \\
664.47 \\
467.55 \\
\vdots
\end{array}\right], \mathbf{X}=\left[\begin{array}{ll}
1 & 890.6 \\
1 & 2300 \\
1 & 1814.5 \\
\vdots & \vdots
\end{array}\right]
$$

Notice: In model with constant first column of matrix $\mathbf{X}$ is column of ones.

## Geometry of OLS

- $\mathbf{e}=\mathbf{y}-\widehat{\mathbf{y}}$ is perpendicular to $\mathbf{X}$ !



## Decomposition of the total sum of square

- One of the measures of variation is the sum of squares of variable around its mean
- We define following sum of squares:
- Total Sum of Squares

$$
T S S=(\mathbf{y}-\overline{\mathbf{y}})^{\prime}(\mathbf{y}-\overline{\mathbf{y}})=\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}
$$

where $\overline{\mathbf{y}}=\mathrm{I} \bar{y}$

- Explained Sum of Squares

$$
E S S=(\hat{\mathbf{y}}-\overline{\hat{\mathbf{y}}})^{\prime}(\widehat{\mathbf{y}}-\overline{\hat{\mathbf{y}}})=\sum_{i=1}^{N}\left(\hat{y}_{i}-\overline{\hat{y}}\right)^{2}
$$

where $\overline{\hat{\mathbf{y}}}=\mathrm{I} \overline{\mathrm{y}}$.

- Residual Sum of Squares

$$
R S S=\mathbf{e}^{\prime} \mathbf{e}=\sum_{i=1}^{N} e_{i}^{2}
$$

## Decomposition of the total sum of squares in model with constant

$$
\underset{\text { Total variation }}{\text { TSS }}=\underset{\text { Explained variation }}{E S S}+\underset{\text { Unexpained variation }}{R S S}
$$

- Total variation can be decomposed into the part which can be expained with the model and the part which cannot be expained with the model


## Measures of fit: R2



## Measures of fit: R2

$\underset{\text { TSS }}{156336837}=\underset{\text { ESS }}{33631553+122705284}$
$R^{2}=\frac{E S S}{T S S}=\frac{33631553}{156336837}=0.2151$

## Constrained maximisation

- result of minimization of $f\left(x_{1}, x_{2}\right)$ for unconstrained $x_{1}, x_{2}$ and unconstrained $x_{2}$ but $x_{1}=0$



## Measures of fit cont.

- Totaly random variable $z_{i}$ was added to regression
- $R^{2}$

| Model | $R S S$ | $R^{2}$ |
| :--- | :---: | :---: |
| $q_{i}=\beta_{1}+\beta_{2}$ inc $_{i}+\varepsilon_{i}$ | 122705284 | .2151 |
| $q_{i}=\beta_{1}+\beta_{2}$ inc $_{i}+\beta_{3} z_{i}+\varepsilon_{i}$ | 122694775 | .2152 |

- Adjusted measure:

$$
\bar{R}^{2}=1-\frac{N-1}{N-K}\left(1-R^{2}\right)
$$

- In previous model

| Model | $R^{2}$ | $K$ | $\bar{R}^{2}$ |
| :--- | :---: | :---: | :---: |
| $q_{i}=\beta_{1}+\beta_{2}$ inc $_{i}+\varepsilon_{i}$ | .2151 | 2 | .2149 |
| $q_{i}=\beta_{1}+\beta_{2}$ inc $_{i}+\beta_{3} z_{i}+\varepsilon_{i}$ | .2152 | 3 | .2147 |

