Three stage Least Squares (3SLS)

- Variance matrix of \boldsymbol{u}_t is given by $\operatorname{Var}\left(\boldsymbol{u}_t\right) = \boldsymbol{\Sigma}$
- Its elements can be interpreted as variances and covariances between simultaneous error terms in equations of the structural form.
- Variance matrix of the error term for equation i and time $1, \ldots, T$ is equal to (homoscedasticity, no autocorrelation):

$$\operatorname{Var}\left(\boldsymbol{u}_{i}\right)=\boldsymbol{\sigma}_{ii}\boldsymbol{I}$$

• Covariance between error terms in equations i and j

$$\operatorname{Cov}(\boldsymbol{u}_i, \boldsymbol{u}_j) = \boldsymbol{\sigma}_{ij} \boldsymbol{I}$$

• Then the error term for stacked model \overline{u} is heteroscedastic and the variance of this error term is given by:

$$\operatorname{Var}\left(\overline{\boldsymbol{u}}\right) = \begin{bmatrix} \boldsymbol{\sigma}_{11}\boldsymbol{I} & \boldsymbol{\sigma}_{1G}\boldsymbol{I} \\ & \ddots & \\ \boldsymbol{\sigma}_{G1}\boldsymbol{I} & \boldsymbol{\sigma}_{GG}\boldsymbol{I} \end{bmatrix} = \overline{\boldsymbol{\Sigma}}$$

where σ_{ij} is equal to i, j element of Σ .

• If we have a consistent estimator $\overline{\beta}$ is possible to estimate elements of Σ as empirical covariances between residuals from equations of the structural form.

$$\widehat{\boldsymbol{\Sigma}}_{ij} = \widetilde{\boldsymbol{\sigma}}_{ij} = \frac{\widetilde{\boldsymbol{e}}_i'\widetilde{\boldsymbol{e}}_j}{T}$$

• But $\overline{\Sigma}$ is just a simple transformation of Σ .

- Then it is possible to obtain more efficient estimator by using the Generalized Least Squares (*GLS*) rather then *OLS* for $\widehat{\overline{Z}}$.
- 3*SLS* method
 - 1. same as in 2SLS
 - **2.** same as in 2SLS
 - 3. from estimated structural form obtain the residuals calculate $\tilde{\sigma}_{ij} = \frac{\tilde{e}'_i \tilde{e}_j}{T}$, form

$$\widehat{\overline{\Sigma}} = \left[egin{array}{ccc} \widetilde{\sigma}_{11}I & & \widetilde{\sigma}_{1G}I \ & \ddots & \ \widetilde{\sigma}_{G1}I & & \widetilde{\sigma}_{GG}I \end{array}
ight]$$

and estimate the parameter vector with GLS estimator

$$\boldsymbol{b}_{3SLS} = \left(\widehat{\boldsymbol{Z}}'\widehat{\boldsymbol{\Sigma}}^{-1}\widehat{\boldsymbol{Z}}
ight)^{-1}\widehat{\boldsymbol{Z}}'\widehat{\boldsymbol{\Sigma}}^{-1}\overline{\boldsymbol{y}}$$

- 3*SLS* is called full information method as it requires the specification of all the equations of the model
- Second most popular full information method of estimation of simultaneous equation models is Full Information Maximum Likelihood (*FIML*)

Example 1. (Klein model) One of the first structural models estimated was model of the US economy in years 1921 - 1941 estimated by Klein. It consists of the following equations:

$$\begin{array}{ll} C_t = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 P_t + \boldsymbol{\alpha}_3 P_{t-1} + \boldsymbol{\alpha}_4 \left(W_t + W_t' \right) + u_{1t} & \text{consumption} \\ W_t = \boldsymbol{\gamma}_1 + \boldsymbol{\gamma}_2 X_t + \boldsymbol{\gamma}_3 X_{t-1} + \boldsymbol{\gamma}_4 t + u_{3t} & \text{wages in private sector} \\ I_t = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 P_t + \boldsymbol{\beta}_3 P_{t-1} + \boldsymbol{\beta}_4 K_{t-1} + u_{2t} & \text{investments} \\ K_t = I_t + K_{t-1} & \text{capital} \\ X_t = C_t + I_t + G_t & \text{GDP identity} \\ P_t = X_t - W_t - T_t & \text{net profits in private sector} \end{array}$$

Endogenous variables in this model are consumption C_t , wages in private

sector W_t , investments I_t , capital K_t , GDP X_t and net profits in private sector P_t . Exogenous variables are the following: constant, linear trend t, government expenditure G_t , wages in public sector W'_t , taxes T_t and lagged variables P_{t-1} , K_{t-1} , X_{t-1} . Profits and wages are separated in consumption equation as the propensity to spent from income from wages is different than to spend income from profits (at least at aggregate level). In this model we have no monetary sector - this is the main difference with standard IS/LM model.

• Estymation of one equation with *IV*

Instrumental variables (2SLS) regression

Source	SS	df 	MS		Number of obs = $F(3, 17) =$	21 225 93
	919.504138 21.9252518		306.501379 1.28972069		Prob > F = 0.0000 R-squared = 0.9767	0.0000 0.9767
Total	941.429389	20 47	.0714695		2 1	1.1357
c	Coef.	Std. Ern	tt	 P> t	[95% Conf. I	nterval]
p wp_plus_wg p L1	.8101827	.0447351		0.000	.7158	.2941197 .9045654 .4677696
_cons Instrumented: Instruments:		1.467979 s_wg	9 11.28			19.65192

• Sargan test for overidentifing restrictions

Tests of overidentifying restrictions:Sargan N*R-sq test8.772 Chi-sq(4)Basmann test9.325 Chi-sq(4)P-value = 0.0535

• Hausaman-Wu test for edogeneity of explanatory variables

Tests of endogeneity of: p L.p wp_plus_wg							
H0: Regressors are exogenous							
Wu-Hausman F test:	3.48647	F(3,14)	P-value = 0.04460				
Durbin-Wu-Hausman chi-sq test:	8.98009	Chi-sq(3)	P-value = 0.02956				

• 2SLS all equations

	Coef.	Std. Err.	t	 P> t	[95% Conf.	Interval]
c p						
L1	.2162338	.1192217	1.81	0.076	0231137	.4555814
	.0173022	.1312046	0.13	0.896	246102	.2807064
wp_plus_wg	.8101827	.0447351	18.11	0.000	.7203733	.8999921
_cons +-	16.55476	1.467979	11.28	0.000	13.60767	19.50185

Macroeconometrics lecture 3, WNE UW, Copyright ©2023 by Jerzy Mycielski

wp							
Х							
		.4388591	.0396026	11.08	0.000	.3593535	.5183646
	L1	.1466739	.0431639	3.40	0.001	.0600187	.233329
year		.1303956	.0323884	4.03	0.000	.0653733	.195418
_cons		-250.2936	61.95692	-4.04	0.000	-374.6773	-125.9099
	+						
р	l						
		.1502219	.1925335	0.78	0.439	2363053	.5367491
	L1	.6159434	.1809258	3.40	0.001	.2527198	.9791671
k1		1577876	.0401521	-3.93	0.000	2383963	077179
_cons		20.27821	8.383247	2.42	0.019	3.448138	37.10828
Endogenous variables: c wp i wp_plus_wg x p Exogenous variables: L.p L.x year k1 g wg t							

• 3SLS all equations

		Coef.	 Std. Err.	Z	 P> z	[95% Conf.	Interval]
	4	+					
С	l						
р							
	L1	.1631439	.1004382	1.62	0.104	0337113	.3599992
		.1248904	.1081291	1.16	0.248	0870387	.3368194
wp_plus_wo	g l	.790081	.0379379	20.83	0.000	.715724	.8644379
_cons		16.44079	1.304549	12.60	0.000	13.88392	18.99766
 wp							
X							
		.4004919	.0318134	12.59	0.000	.3381388	.462845
	L1	.181291	.0341588	5.31	0.000	.1143411	.2482409
year		.149674	.0279352	5.36	0.000	.094922	.2044261
_cons	l	-287.2233	53.4488	-5.37	0.000	-391.9811	-182.4656
i							
р							
-		0130791	.1618962	-0.08	0.936	3303898	.3042316
	L1	.7557238	.1529331	4.94	0.000	.4559805	1.055467
k1		1948482	.0325307	-5.99	0.000	2586072	1310893
_cons		28.17785	6.793768	4.15	0.000	14.86231	41.49339

Macroeconometrics lecture 3, WNE UW, Copyright ©2023 by Jerzy Mycielski

Endogenous variables: c wp i wp_plus_wg x p Exogenous variables: L.p L.x year k1 g wg t

Lukas critique of classical econometrics

- Equations of structural model describe the behavior of rational agents
- In classical structural model behavior of agents was explained by changes of exogenous variables
- However: the form of structural equations were often not based on the principle of agents rationality (were lacking microfoundations)
- But: if the process generating the exogenous variables changes the rational agent will take in account and will adjust his behavior to maximize his objective function
- As a result the parameters of the model may change

• The most important conclusion is that predictions about the results of the changes of the government policy based on classical structural model can prove to be completely misleading

Example 2. Demand for labor

 $\begin{array}{l} l = - \beta_0 + g dp - \beta_1 t + \varepsilon_1 & \textit{demand for labour (in hours)} \\ x = l - h & \textit{demand for labour (in number of workers)} \end{array}$

where *l* is the log of total number of hours worked, gdp is the log of gross domestic product, *h* is the log of the average number of hours worked and *x* is the number of workers. $\exp(\beta_0 + \beta_1 t)$ can be interpreted as log of unit labor cost and β_1 is the average growth rate of unit labor costs. gdp, *h* are exogenous in this model. Parameters β_0 and β_1 has to be estimated.

According to this model government can increase employment changing *h*. It can be done by reducing working hours.

France tried to reduce unemployment in this way - result was either nil or negative. It seems that neither β_0 , β_1 is constant nor gdp is exogenous as h changes.

Solution: to predict the result of the change of the government policy with respect to working hours we should build the equilibrium model in which agents are rational, derive the structural model an the base of this economic model and estimate it parameters.

- Conclusion:
 - equations of structural model should be based on microfoundations

Sims critique of classical econometrics

- Forecast from large simultaneous equations models are not better the forecasts from atheoretical *ARIMA* models
- High R^2 and significant t statistics where often obtained by unstructured data mining
- Sims critique
 - Economic theory is mostly related to equilibrium conditions
 - Therefore in structural dynamic dynamic models the form of structural equations cannot be based in theory
 - It is impossible do distinguish between exogenous and endogenous variables everything depend on everything

- Sims solution to the problems of structural modelling:
 - Analyze the dynamic features of the model rather than its structure
 - It is especially important to identify the reactions of the model to the shocks (government interventions, unexpected actions of central bank etc.)