Testing methodology

- It often the case that we try to determine the form of the model on the basis of data
- The simplest case: we try to determine the set of explanatory variables in the model
- Testing for significance of the set of *K* variables we can test:
- 1. Joint hypothesis $H_0: \beta_1 = \ldots = \beta_K = 0$, at significance level α .
- 2. *K* simple hypotheses $H_1 : \beta_1 = 0; ...; H_K : \beta_K = 0$, at significance level of α for each of them

- For the second procedure we reject the null if one of the hypotheses H_1, \ldots, H_K is rejected
- This two testing procedures are not equivalent
- Assume that test statistics are independent
- In the second procedure true significance level is equal to:

$$\boldsymbol{\alpha}^* = 1 - \left(1 - \boldsymbol{\alpha}\right)^K$$

• Notice that for $\lim_{K \longrightarrow \infty} \alpha^* = 1!$

Conclusion 1. we should always test the joint hypothesis rather than separately test the simple hypotheses. Otherwise we should make adjustments to significance level.

• Difference between nominal significance level α and true significance level α^* is called Lovell bias.

General to specific modelling

- Objective: to find the correct specification of the model on the basis of data
- Searching for correct specification of the model it is often possible to formulate the series of nested models and hypotheses

Example 2. Determining the set of explanatory variables:

• -
$$H_0^0 : \beta_i \neq 0$$
 for $i = 1, ..., K$
- $H_0^1 : \beta_1 = 0$
- $H_0^2 : \beta_1 = \beta_2 = 0$
- :
- $H_0^K : \beta_1 = ... = \beta_K = 0$

- H_0^K is nested in H_0^1 and H_0^2 , if it imposes some restricts over the ones imposed H_0^1 and H_0^2 .
- Each time we test H_0^i under alternative H_0^0 (usually with F test)
- We stop the imposing restrictions when H_0^i is rejected, we choose model given by H_0^{i-1} as correct the model

Information criteria

- Information criteria are used to compare the models and choose the best one
- Fit of the model cannot be the base of the choice between models because for larger number of parameters (variables), fit is always better
- Conventionally the information criteria are defined in such a way that the best model has the lowest information criterion is the best
- Information criteria are defined in such a way that they take into account the fact that better fit can always be achieved with more parameters. They only improve if the improvement in fit is "significant".

• The most often used are Akaike Information Criterion (*AIC*) and Bayes Information Criterion (*BIC*)

$$BIC = -\frac{2\ell\left(\widehat{\theta}\right)}{n} + \frac{K\log\left(n\right)}{n}$$
$$AIC = -\frac{2\ell\left(\widehat{\theta}\right)}{n} + \frac{2K}{n}$$

Dynamic models

- Objective: to describe the behavior of the economic system in time
- Following dynamic characteristics are of the interest to economists
 - existence and parameters of the long run equilibrium
 - how fast the system adjust to long run equilibrium
 - what is the time pattern of reactions of the economic system to exogenous shocks (e.g. policy changes)
 - seasonality
- Additional reason to investigate the dynamic features of the economic system is the analysis of causality and forecasting

- Forecasting is only possible if we are able to identify variables (causes), whose changes with some time lag influence the other variables
- In dynamic models we always try to eliminate autocorrelation because it can bias the estimates of the parameters and also is a signal that we failed to explain the dynamics of the dependent variable

Distributed lag model (*DL***)**

- Model in which only the *DL* (**D**istributed Lags) part is present
- It is simple to analyze because x_t and lagged x_t can be assumed to be exogenous
- Model can satisfy the assumptions of Classical Regression Model

$$y_t = \boldsymbol{\mu} + \boldsymbol{\beta}_0 \boldsymbol{x}_t + \ldots + \boldsymbol{\beta}_p \boldsymbol{x}_{t-p} + \boldsymbol{\varepsilon}_t$$

• Coefficients of explanatory variables describe the reaction of the *y* on the changes of *x* in time *t* but also in earlier periods

- When interpret this coefficients it is important to clarify whether we mean:
 - short run reaction of y_t to the unit change of x_t (impact multiplier)
 - cumulated reaction of y_t to the unit change of $x_t, \ldots, x_{t-\tau}$ (cumulated multiplier)
 - the long run reaction of y_t to the permanent unit change of x_t (long-run multiplier)
- For *DL* models:
 - Change of x_t by Δx_t causes the change of y_t equal to:

$$\begin{split} \mathbf{E} \left(y_t + \Delta y_t \right) &= \boldsymbol{\mu} + \boldsymbol{\beta}_0 \left(\boldsymbol{x}_t + \Delta \boldsymbol{x}_t \right) + \ldots + \boldsymbol{\beta}_p \boldsymbol{x}_{t-p} \\ &= \mathbf{E} \left(y_t \right) + \boldsymbol{\beta}_0 \Delta \boldsymbol{x}_t \end{split}$$

Impact multiplier is then equal to:

$$\frac{\mathrm{E}\left(\Delta y_{t}\right)}{\Delta \boldsymbol{x}_{t}} = \boldsymbol{\beta}_{0}$$

- Change of x_t by Δx_t which happened τ periods before t and influenced x_t afterwards causes the change of y_t equal to:

$$E(y_t + \Delta y_t) = \boldsymbol{\mu} + \boldsymbol{\beta}_0 (\boldsymbol{x}_t + \Delta \boldsymbol{x}) + \ldots + \boldsymbol{\beta}_{\boldsymbol{\tau}} (\boldsymbol{x}_{t-\boldsymbol{\tau}} + \Delta \boldsymbol{x}) \\ + \boldsymbol{\beta}_{\boldsymbol{\tau}+1} \boldsymbol{x}_{t-\boldsymbol{\tau}+1} + \ldots + \boldsymbol{\beta}_p \boldsymbol{x}_{t-p} \\ = E(y_t) + \left(\sum_{i=0}^{\boldsymbol{\tau}} \boldsymbol{\beta}_i\right) \Delta \boldsymbol{x}$$

Cumulated multiplier is then equal to:

$$\boldsymbol{\beta}_{\boldsymbol{\tau}} = \frac{\mathrm{E}\left(\Delta y_{t+\boldsymbol{\tau}}\right)}{\Delta \boldsymbol{x}} = \sum_{i=0}^{\boldsymbol{\tau}} \boldsymbol{\beta}_{i}$$

– Long run influence of the permanent change of x by Δx is measured with long run multiplier. It is equal to cumulated multiplier for $\tau \to \infty$

$$\frac{\mathrm{E}\left(\Delta y\right)}{\Delta \boldsymbol{x}} = \boldsymbol{\beta} = \sum_{i=0}^{\infty} \boldsymbol{\beta}_{i}$$

• Speed of reaction of the dependent variable to changes of independent variables can be measured with mean lag: $\overline{w} = \sum_{i=1}^{\infty} i \frac{\beta_i}{\beta}$

Exercise 3. Relationship between unemployment according to BAEL (ILO definition) and supply of money in nominal terms (m3p) - Polish quarterly data

Choice of the lag length - general to specific method: it was assumed that the maximum sensible number of lags was 6

bael		Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
 mЗр	++						
		2284744	.1149244	-1.99	0.056	4635211	.0065723
	L1	2218003	.1192405	-1.86	0.073	4656745	.0220739
	L2	2727794	.1166159	-2.34	0.026	5112856	0342732
	L3	2606365	.0965898	-2.70	0.011	4581849	0630882
	L4	1721529	.1082111	-1.59	0.122	3934693	.0491636
	L5	0142759	.1108159	-0.13	0.898	2409199	.2123681
	L6	0176795	.1072485	-0.16	0.870	2370272	.2016683
_cons		20.51169	.5000556	41.02	0.000	19.48897	21.53442

- β₆ = 0: F(1, 29) = 0.03 [0.8702]
 AIC: 3.945
 BIC: 25.231
- β₆ = β₅ = 0: F(2, 29) = 0.02[0.9825]
 AIC: 3.904
 BIC: 21.588
- β₆ = β₅ = β₄ = 0: F(3, 29) = 0.90 [0.4513]
 AIC: 3.951
 BIC: 21.188
- $\beta_6 = \beta_5 = \beta_4 = \beta_3 = 0$: F(4, 29) = 2.46[0.0673]

AIC: 4.088 BIC: 24.396

- Information criterion AIC suggests 4 lags, BIC suggests 3 lags
- Testing from general to specific at $\alpha = 10\%$ suggests 3 lags
- We choose 3 lags

Source	SS	df	MS		Number of obs	
Model Residual	376.021652		94.005413		F(4, 35) Prob > F R-squared Adj R-squared	= 0.0000 = 0.7757
Total	484.729539	39 12	2.4289625		Root MSE	= 1.7624
bael	Coef.	Std. Err	. t	 P> t	[95% Conf.	Interval]
m3p L1 L2 L3 _cons	2819283 2017262 2861484 2836885 20.05402	.0991632 .0938015 .0944252 .09924 .5144917	-2.15 -3.03 -2.86	0.007 0.038 0.005 0.007 0.000	4832404 3921533 4778417 4851565 19.00954	0806162 0112991 094455 0822205 21.09849

- According to IS/LM monetary expansion should reduce unemployment
- Impact multiplier of the change of supply of money (change of

unemployment in reaction of 1% increase in money supply):

 $\beta_0 = -.2819283$

• Long run multiplier of the change of supply of money (change of unemployment if the rate of money expansion is permanently increased by 1%)

$$\beta = -.2819283 - .2017262 - .2861484 - .2836885 = -1.0535$$

- Long run multiplier is 4 times larger than impact multiplier!
- Mean lag:

$$\overline{w} = \frac{1}{1.0535} \left(.2017262 + 2 \times .2861484 + 3 \times .2836885 \right) = 1.5426$$

Macroeconometrics, WNE UW, Copyright ©2023 by Jerzy Mycielski

- Because model is based in quarterly data \overline{w} suggests that mean lag of the reaction of unemployment is equal to about 1.5 quarters.
- However: we failed to account for all the dynamics of the reaction of unemployment to money expansion this can be inferred from the result of the autocorrelation test:

Breusch-Godfrey LM	l test for autocor	relation	
lags(p)	chi2	df	Prob > chi2
1 I	20.953	1	0.0000
	HO: no seri	al correlation	

H0: no serial correlation