Testing methodology

- It often the case that we try to determine the form of the model on the basis of data
- The simplest case: we try to determine the set of explanatory variables in the model
- Testing for significance of the set of K variables we can test:

1. Joint hypothesis $H_{0}: \boldsymbol{\beta}_{1}=\ldots=\boldsymbol{\beta}_{K}=0$, at significance level $\boldsymbol{\alpha}$.
2. K simple hypotheses $H_{1}: \boldsymbol{\beta}_{1}=0 ; \ldots ; H_{K}: \boldsymbol{\beta}_{K}=0$, at significance level of α for each of them

- For the second procedure we reject the null if one of the hypotheses H_{1}, \ldots, H_{K} is rejected
- This two testing procedures are not equivalent
- Assume that test statistics are independent
- In the second procedure true significance level is equal to:

$$
\boldsymbol{\alpha}^{*}=1-(1-\boldsymbol{\alpha})^{K}
$$

- Notice that for $\lim _{K \rightarrow \infty} \boldsymbol{\alpha}^{*}=1$!

Conclusion 1. we should always test the joint hypothesis rather than separately test the simple hypotheses. Otherwise we should make adjustments to significance level.

- Difference between nominal significance level α and true significance level α^{*} is called Lovell bias.

General to specific modelling

- Objective: to find the correct specification of the model on the basis of data
- Searching for correct specification of the model it is often possible to formulate the series of nested models and hypotheses

Example 2. Determining the set of explanatory variables:

- - $H_{0}^{0}: \boldsymbol{\beta}_{i} \neq 0$ for $i=1, \ldots, K$
- $H_{0}^{1}: \boldsymbol{\beta}_{1}=0$
- $H_{0}^{2}: \boldsymbol{\beta}_{1}=\boldsymbol{\beta}_{2}=0$
- :
- $H_{0}^{K}: \boldsymbol{\beta}_{1}=\ldots=\boldsymbol{\beta}_{K}=0$
- H_{0}^{K} is nested in H_{0}^{1} and H_{0}^{2}, if it imposes some restricts over the ones imposed H_{0}^{1} and H_{0}^{2}.
- Each time we test H_{0}^{i} under alternative H_{0}^{0} (usually with F test)
- We stop the imposing restrictions when H_{0}^{i} is rejected, we choose model given by H_{0}^{i-1} as correct the model

Information criteria

- Information criteria are used to compare the models and choose the best one
- Fit of the model cannot be the base of the choice between models because for larger number of parameters (variables), fit is always better
- Conventionally the information criteria are defined in such a way that the best model has the lowest information criterion is the best
- Information criteria are defined in such a way that they take into account the fact that better fit can always be achieved with more parameters. They only improve if the improvement in fit is "significant".
- The most often used are Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC)

$$
\begin{aligned}
& B I C=-\frac{2 \ell(\widehat{\boldsymbol{\theta}})}{n}+\frac{K \log (n)}{n} \\
& A I C=-\frac{2 \ell(\widehat{\boldsymbol{\theta}})}{n}+\frac{2 K}{n}
\end{aligned}
$$

Dynamic models

- Objective: to describe the behavior of the economic system in time
- Following dynamic characteristics are of the interest to economists
- existence and parameters of the long run equilibrium
- how fast the system adjust to long run equilibrium
- what is the time pattern of reactions of the economic system to exogenous shocks (e.g. policy changes)
- seasonality
- Additional reason to investigate the dynamic features of the economic system is the analysis of causality and forecasting
- Forecasting is only possible if we are able to identify variables (causes), whose changes with some time lag influence the other variables
- In dynamic models we always try to eliminate autocorrelation because it can bias the estimates of the parameters and also is a signal that we failed to explain the dynamics of the dependent variable

Distributed lag model ($D L$)

- Model in which only the $D L$ (Distributed Lags) part is present
- It is simple to analyze because x_{t} and lagged x_{t} can be assumed to be exogenous
- Model can satisfy the assumptions of Classical Regression Model

$$
y_{t}=\boldsymbol{\mu}+\boldsymbol{\beta}_{0} \boldsymbol{x}_{t}+\ldots+\boldsymbol{\beta}_{p} \boldsymbol{x}_{t-p}+\boldsymbol{\varepsilon}_{t}
$$

- Coefficients of explanatory variables describe the reaction of the y on the changes of x in time t but also in earlier periods
- When interpret this coefficients it is important to clarify whether we mean:
- short run reaction of y_{t} to the unit change of x_{t} (impact multiplier)
- cumulated reaction of y_{t} to the unit change of $x_{t}, \ldots, x_{t-\tau}$ (cumulated multiplier)
- the long run reaction of y_{t} to the permanent unit change of x_{t} (long-run multiplier)
- For $D L$ models:
- Change of x_{t} by Δx_{t} causes the change of y_{t} equal to:

$$
\begin{aligned}
\mathrm{E}\left(y_{t}+\Delta y_{t}\right) & =\boldsymbol{\mu}+\boldsymbol{\beta}_{0}\left(\boldsymbol{x}_{t}+\Delta \boldsymbol{x}_{t}\right)+\ldots+\boldsymbol{\beta}_{p} \boldsymbol{x}_{t-p} \\
& =\mathrm{E}\left(y_{t}\right)+\boldsymbol{\beta}_{0} \Delta \boldsymbol{x}_{t}
\end{aligned}
$$

Impact multiplier is then equal to:

$$
\frac{\mathrm{E}\left(\Delta y_{t}\right)}{\Delta \boldsymbol{x}_{t}}=\boldsymbol{\beta}_{0}
$$

- Change of x_{t} by Δx_{t} which happened τ periods before t and influenced x_{t} afterwards causes the change of y_{t} equal to:

$$
\begin{aligned}
\mathrm{E}\left(y_{t}+\Delta y_{t}\right)= & \boldsymbol{\mu}+\boldsymbol{\beta}_{0}\left(\boldsymbol{x}_{t}+\Delta \boldsymbol{x}\right)+\ldots+\boldsymbol{\beta}_{\boldsymbol{\tau}}\left(\boldsymbol{x}_{t-\boldsymbol{\tau}}+\Delta \boldsymbol{x}\right) \\
& +\boldsymbol{\beta}_{\boldsymbol{\tau}+1} \boldsymbol{x}_{t-\boldsymbol{\tau}+1}+\ldots+\boldsymbol{\beta}_{p} \boldsymbol{x}_{t-p} \\
= & \mathrm{E}\left(y_{t}\right)+\left(\sum_{i=0}^{\boldsymbol{\tau}} \boldsymbol{\beta}_{i}\right) \Delta \boldsymbol{x}
\end{aligned}
$$

Cumulated multiplier is then equal to:

$$
\boldsymbol{\beta}_{\boldsymbol{\tau}}=\frac{\mathrm{E}\left(\Delta y_{t+\boldsymbol{\tau}}\right)}{\Delta \boldsymbol{x}}=\sum_{i=0}^{\tau} \boldsymbol{\beta}_{i}
$$

- Long run influence of the permanent change of x by Δx is measured with long run multiplier. It is equal to cumulated multiplier for $\tau \rightarrow \infty$

$$
\frac{\mathrm{E}(\Delta y)}{\Delta \boldsymbol{x}}=\boldsymbol{\beta}=\sum_{i=0}^{\infty} \boldsymbol{\beta}_{i}
$$

- Speed of reaction of the dependent variable to changes of independent variables can be measured with mean lag: $\bar{w}=\sum_{i=1}^{\infty} i \frac{\mathcal{B}_{i}}{\boldsymbol{\beta}}$

Exercise 3. Relationship between unemployment according to BAEL (ILO definition) and supply of money in nominal terms ($m 3 p$) - Polish quarterly data

Choice of the lag length - general to specific method: it was assumed that the maximum sensible number of lags was 6

bael		Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
m3p							
	--	-. 2284744	. 1149244	-1.99	0.056	-. 4635211	. 0065723
	L1	-. 2218003	. 1192405	-1.86	0.073	-. 4656745	. 0220739
	L2	-. 2727794	. 1166159	-2.34	0.026	-. 5112856	-. 0342732
	L3	-. 2606365	. 0965898	-2.70	0.011	-. 4581849	-. 0630882
	L4	-. 1721529	. 1082111	-1.59	0.122	-. 3934693	. 0491636
	L5	-. 0142759	. 1108159	-0.13	0.898	-. 2409199	. 2123681
	L6	-. 0176795	.1072485	-0.16	0.870	-. 2370272	. 2016683
_cons		20.51169	. 5000556	41.02	0.000	19.48897	21.53442

- $\boldsymbol{\beta}_{6}=0: F(1,29)=0.03[0.8702]$

AIC: 3.945
BIC: 25.231

- $\boldsymbol{\beta}_{6}=\boldsymbol{\beta}_{5}=0: F(2,29)=0.02[0.9825]$

AIC: 3.904
BIC: 21.588

- $\boldsymbol{\beta}_{6}=\boldsymbol{\beta}_{5}=\boldsymbol{\beta}_{4}=0: \mathrm{F}(3,29)=0.90[0.4513]$

AIC: 3.951
BIC: 21.188

- $\boldsymbol{\beta}_{6}=\boldsymbol{\beta}_{5}=\boldsymbol{\beta}_{4}=\boldsymbol{\beta}_{3}=0: \mathrm{F}(4,29)=2.46[0.0673]$

AIC: 4.088
BIC: 24.396

- Information criterion $A I C$ suggests 4 lags, BIC suggests 3 lags
- Testing from general to specific at $\boldsymbol{\alpha}=10 \%$ - suggests 3 lags
- We choose 3 lags

Source	SS	df MS			Number of obs $=40$	
					F (4, 35)	$=30.27$
Model	376.021652	494	05413		Prob > F	$=0.0000$
Residual	108.707887	353.1	93963		R-squared	$=0.7757$
					Adj R-squared	$=0.7501$
Total	484.729539	3912	89625		Root MSE	$=1.7624$
bael	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf.	Interval]
m3p						
- --	-. 2819283	. 0991632	-2.84	0.007	-. 4832404	-. 0806162
L1	-. 2017262	. 0938015	-2.15	0.038	-. 3921533	-. 0112991
L2	-. 2861484	. 0944252	-3.03	0.005	-. 4778417	-. 094455
L3	-. 2836885	. 09924	-2.86	0.007	-. 4851565	-. 0822205
_cons	20.05402	. 5144917	38.98	0.000	19.00954	21.09849

- According to IS/LM monetary expansion should reduce unemployment
- Impact multiplier of the change of supply of money (change of
unemployment in reaction of 1% increase in money supply):

$$
\boldsymbol{\beta}_{0}=-.2819283
$$

- Long run multiplier of the change of supply of money (change of unemployment if the rate of money expansion is permanently increased by 1%)

$$
\boldsymbol{\beta}=-.2819283-.2017262-.2861484-.2836885=-1.0535
$$

- Long run multiplier is 4 times larger than impact multiplier!
- Mean lag:

$$
\bar{w}=\frac{1}{1.0535}(.2017262+2 \times .2861484+3 \times .2836885)=1.5426
$$

- Because model is based in quarterly data \bar{w} suggests that mean lag of the reaction of unemployment is equal to about 1.5 quarters.
- However: we failed to account for all the dynamics of the reaction of unemployment to money expansion - this can be inferred from the result of the autocorrelation test:

Breusch-Godfrey LM test for autocorrelation

HO: no serial correlation

