Econometrics exam 07.02.2013

- 1. Exam takes 90 min.
- 2. This exam is a closed book exam.
- 3. Everybody is required to sign on the list.
- 4. The solution of exercise should be written on the sheet on which the exercise was printed or on the additional sheets on the back of the exam.
- 5. All the pages with solutions should be signed. If additional sheet is used it is very important to put the number of the exercise on the top of it.
- 6. Only one exercise should be solved on one sheet.
- 7. The minimum to obtain the pass grade is to answer two theoretical questions and to solve one exercise.

Theoretical questions

- 1. Why dicrete explanatory variable should be recoded into appropriate number of dummy variables before being included in the regression equation?
- 2. Derive OLS estimator for model with multiple explanatory variables. Show that the necessary and sufficient conditions for existence of the minimum of the objective function are in this case satisfied

Theoretical questions cont.

- 3. Explain the difference between parameters and estimates of the parameters and between error terms and residuals.
- 4. Why R^2 should not be used to compare models.

EXERCISE 1 The following model with one explanatory variable and no constant was analyzed:

$$y_t = \beta_i x_i + \varepsilon_i, \qquad \varepsilon \sim N\left(0, \sigma^2 I\right)$$

where x_i is nonrandom. Number of observations N = 11, $\sum_{i=1}^{n} x_i^2 = 2$, $\sum_{i=1}^{n} x_i y_i = 4$ and the sum of residuals $\sum_{i=1}^{n} e_i^2 = 5$.

- 1. Calculate the value of the OLS estimator b of the parameter β .
- 2. Calculate the value of OLS estimator of variance of *b*.
- 3. It was suggested that the estimator $\hat{\beta} = \frac{\overline{y}}{\overline{x}}$ is a good estimator of parameter β . Show that indeed this estimator is unbiased estimator of parameter β .

1	2	3	4	5	6	7	8a	8b	8c	\sum

EXERCISE 2 Wage equation for small enterprises was estimated on the data from Polish Labor Force Survey (LFS) from year 2010. Dependent variable (ln_wage) is the logarithm of wage. Explanatory variables are as follows: age (age), age squared (age_2) , type of neighborhood in which employed is living (rural: 0 urban area, 1 rural area), sex (sex: 0 male, 1 female), education (educ: 0 primary, 1 vocational education, 2 secondary, 3 higher), working time $(w_time: 0 \text{ part-time}, 1 \text{ full-time})$, marital status (status: 0 single, 1 married, 2 widow/widower, 3 divorced) and interaction between gender and working time. Estimation results are reported below. Significance level to be used in testing $\alpha = 0.05$. Results of the tests should be justified with respective p-values.

Source		SS	df		MS		Number of obs	=	1967
	+-						F(12, 1954)	=	118.05
Model	I.	211.507908	12	17.	625659		Prob > F	=	0.0000
Residual		291.740412	1954	.149	304203		R-squared	=	0.4203
	+-						Adj R-squared	=	0.4167
Total		503.24832	1966	.255	975748		Root MSE	=	.3864
ln_wage		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	+-								
educ_1	1	.2021485	.030	3484	6.66	0.000	.1426299		2616671
educ_2		.2945919	.036	2894	8.12	0.000	.2234219		3657619
educ_3	1	.4560558	.037	8275	12.06	0.000	.3818694		5302422
rural	L	0433189	.018	0795	-2.40	0.017	078776		0078618
age		.0388162	.005	6042	6.93	0.000	.0278253		0498072
age_2	1	0004376	.000	0676	-6.47	0.000	0005702		0003049
sex		1072408	.050	5662	-2.12	0.034	2064101		0080716
w_time		.780341	.044	4233	17.57	0.000	.693219		8674629
sexXw_time		1257776	.053	4618	-2.35	0.019	2306257		0209296
status_1	Ι	.0951863	.024	0566	3.96	0.000	.0480071		1423656
status_2	Ι	1416434	.060	5747	-2.34	0.019	2604411		0228456
status_3	I	0243112	.044	5971	-0.55	0.586	111774		0631517
_cons		5.470661	.10	6983	51.14	0.000	5.260849	5	.680474

Breusch-Pagan LM statistic:	Chi2(1)	=	284.26	p-value	=	0.000
White's general test statistic:	Chi2(70)	=	508.28	p-value	=	0.000
Jarque-Berra test statistic:	Chi2(2)	=	3185.88	p-value	=	0.000
Ramsey RESET test statistic:	F(3,1951)	=	44.72	p-value	=	0.000

- 1. Are the explanatory variables jointly significant?
- 2. Give an interpretation to coefficient of determination R^2 .
- 3. Verify which explanatory variables are statistically significant.
- 4. Interpret the values of the estimates for variables w_time and $sexXw_time$. Use both the approximate and exact measure of the impact of the dummy explanatory variable. Calculate the partial semielasticity wage w.r.t. age for a employed who are 40 years old.
- 5. Is the heteroscedasticity problem present in the estimated model?
- 6. Is the error term normal in the estimated model?
- 7. Check whether the linear functional form of the model is valid.
- 8. If estimated model does not satisfy the assumptions of CLRM explain:
 - (a) which assumptions of CLRM are invalid,
 - (b) what consequences does it have on statistical inference for this model,
 - (c) how the problems indicated by diagnostic tests could be solved.

EXERCISE 3 Using anather data set obtained from Polish LFS researcher wants to estimate some additional models for the wage equation. Before starting the estimation procedure he calculated descriptive statistics for variable wage. This statistics are reported below.

Variable	l Obs	Mean	Std. Dev.	Min	Max
wage	4534	57188.11	48913.66	90	99999

```
count if placa==99999
2567
```

- 1. Explain why some observations for this variable wage looks suspicious?
- 2. After the estimation of the regression model researcher made dot diagram for observations for ln_wage and age and plotted the graph illustrating the relationship between leverage and squared standardized residuals. Decide on the basis of these graphs which observations are suspicious and why?

3. Two additional variables were added to the regression from the previous exercise: work experience in the present workplace (*exper*) and total work experience (*exper_tot*). Researcher estimated as well the correlation matrix for some explanatory variables included in the regression. The results of the regression and the estimated correlation matrix are reported below. What problem is present in this regression?

Source	 +-	SS	df 		MS		Number of obs	=	1967 105 67
Model Residual	' +_	216.967865 286.280455	14 1952	15.4	977047		Prob > F R-squared	=	0.0000
Total		503.24832	1966	.255	975748		Root MSE	=	.38296
ln_wage	 +-	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
educ_1		.1889953	.0302	2267	6.25	0.000	.1297153		2482753
educ_2		.2786084	.0360	0692	7.72	0.000	.2078703		3493465
educ_3		.4458425	.037	5599	11.87	0.000	.3721808		5195043
rural		0512427	.017	9803	-2.85	0.004	0865054		01598
age		.0358145	.005	6632	6.32	0.000	.0247081		.046921
age_2		0004565	.0000	0674	-6.77	0.000	0005887		0003243
sex		1157975	.0501	1914	-2.31	0.021	2142319		0173632
w_time		.7589422	.0442	1721	17.18	0.000	.6723127		8455717
sexXw_time		1165905	.0530	0097	-2.20	0.028	220552	-	.012629
status_1		.0928414	.0238	8605	3.89	0.000	.0460467	•	1396362
status_2		1109334	.0602	2626	-1.84	0.066	2291193		0072524
status_3		0083049	.0442	2809	-0.19	0.851	0951477		0785379
exper		.0076781	.0014	4517	5.29	0.000	.0048311		0105252
exper_tot		.0026003	.001	1987	1.31	0.191	0012967	•	0064972
_cons		5.566119	.1095	5404	50.81	0.000	5.351291	5	.780947

Correlation matrix

		age	exper exp	per_tot
age	 	1.0000		
exper		0.4875	1.0000	
exper_tot		0.9201	0.5743	1.0000

4. Researcher made additional regression of the logarithm of wage on numbers of years of education $(educ_yrs)$ and obtained the following results

Source	SS	df	MS	5		Number o	f obs	=	1968
+	+					F(1,	1966)	=	36.69
Model	13.7328051	1	13.7328	8051		Prob > F		=	0.0000
Residual	735.877367	1966	.374301	814		R-square	d	=	0.0183
+	+					Adj R-sq	uared	=	0.0178
Total	749.610172	1967	.381093	3122		Root MSE		=	.6118
ln_wage	Coef.	Std. I	Err.	t	P> t	[95%	Conf.	Int	erval]
educ_yrs cons	.1009973	.0166	741 974 26	6.06	0.000	.0682	967 976	•	133698
_00110									

What is the probable direction of bias of the coefficient for $educ_yrs$ related to omission from the model of the variable rural?

EXRECISE.....

EXRECISE.....