Mathematical analysis - basic concepts

1. Derivative of scalar and vector functions with respect to a vector of variables.
2. Show that for column vectors \mathbf{a} and β the following holds: $\frac{\partial \mathbf{a}^{\prime} \beta}{\partial \beta}=\mathbf{a} \mathbf{i} \frac{\partial \mathbf{a}^{\prime} \beta}{\partial \beta^{\prime}}=\mathbf{a}^{\prime}$
3. Show that for $\frac{\partial \mathbf{A} \beta}{\partial \beta^{\prime}}=\mathbf{A} i \frac{\partial \beta^{\prime} \mathbf{A}}{\partial \beta}=\mathbf{A}$
4. Show that $\frac{\partial \beta^{\prime} \mathbf{A} \beta}{\partial \beta^{\prime}}=2 \mathbf{A} \beta$
5. What values should be assumed by the gradient of a continuous and differentiable function $f(\beta)$ at point β^{*}, so that β^{*} could be a maximum point.
6. What are the characteristics of second derivatives' matrix?
7. How can you recognise (basing on the characteristics of the second derivatives' matrix) whether an identified extremum is a maximum?

Problems

1. Find the gradient and the Hessian for $y=2 x_{1}^{2}+3 x_{2}^{2}+5 x_{1} x_{2}-4$. Find the extremum and identify whether this is a maximum or a minimum? Local or global?
2. Find the extremum of the function $y=x_{1}^{2}+4 x_{2}^{2}+x_{1} x_{2}-1$ and characterise it. Find this extremum subject to the constraint $x_{2}-2 x_{1}=1$. Use the Lagrangean pasting the constraints directly to the objective function. Compare the extrema in both cases.
3. The following maxima have been identified: $g^{*}=\max _{x_{1}, x_{2}} g\left(x_{1}, x_{2}\right)$ i $g^{* *}=\max _{x_{1}} g\left(x_{1}, 0\right)$. How are $g^{*} \mathrm{i} g^{* *}$ related?
4. We have found the maxima with following constraints $g^{*}=\max _{x_{1}, x_{2}} g(\mathbf{x})$ s.t. $\mathbf{H}(\mathbf{x})=0$ and a maximum without constraints $g^{* *}=\max _{x_{1}, x_{2}} g(\mathbf{x})$. What is the relation between $g^{*} \mathrm{i} g^{* *}$?
5. A maximum with the constraints has been found $g^{*}=\max _{x_{1}, x_{2}} g(\mathbf{x})$ s.t. $\mathbf{H}(\mathbf{x})=0$. During the procedure, it has turned out that $i^{t h}$ line of matrix $\mathbf{H}(\mathbf{x})$ is positive at maximum point. $\left(\mathbf{H}_{i}\left(\mathbf{x}^{*}\right)>0\right)$. What is the value for the Lagrangean for the $i^{t h}$ constraint in this problem?
