Mathematical analysis - basic concepts

- 1. Derivative of scalar and vector functions with respect to a vector of variables.
- 2. Show that for column vectors **a** and β the following holds: $\frac{\partial \mathbf{a}'\beta}{\partial \beta} = \mathbf{a} \ \mathbf{i} \ \frac{\partial \mathbf{a}'\beta}{\partial \beta'} = \mathbf{a}'$
- 3. Show that for $\frac{\partial \mathbf{A}\beta}{\partial \beta'} = \mathbf{A} \ \mathbf{i} \ \frac{\partial \beta' \mathbf{A}}{\partial \beta} = \mathbf{A}$
- 4. Show that $\frac{\partial \beta' \mathbf{A} \beta}{\partial \beta'} = 2\mathbf{A}\beta$
- 5. What values should be assumed by the gradient of a continuous and differentiable function $f(\beta)$ at point β^* , so that β^* could be a maximum point.
- 6. What are the characteristics of second derivatives' matrix?
- 7. How can you recognise (basing on the characteristics of the second derivatives' matrix) whether an identified extremum is a maximum?

Problems

- 1. Find the gradient and the Hessian for $y = 2x_1^2 + 3x_2^2 + 5x_1x_2 4$. Find the extremum and identify whether this is a maximum or a minimum? Local or global?
- 2. Find the extremum of the function $y = x_1^2 + 4x_2^2 + x_1x_2 1$ and characterise it. Find this extremum subject to the constraint $x_2 2x_1 = 1$. Use the Lagrangean pasting the constraints directly to the objective function. Compare the extrema in both cases.
- 3. The following maxima have been identified: $g^* = \max_{x_1,x_2} g(x_1,x_2)$ i $g^{**} = \max_{x_1} g(x_1,0)$. How are g^* i g^{**} related?
- 4. We have found the maxima with following constraints $g^* = \max_{x_1, x_2} g(\mathbf{x})$ s.t. $\mathbf{H}(\mathbf{x}) = 0$ and a maximum without constraints $g^{**} = \max_{x_1, x_2} g(\mathbf{x})$. What is the relation between g^* i g^{**} ?
- 5. A maximum with the constraints has been found $g^* = \max_{x_1,x_2} g(\mathbf{x})$ s.t. $\mathbf{H}(\mathbf{x}) = 0$. During the procedure, it has turned out that i^{th} line of matrix $\mathbf{H}(\mathbf{x})$ is positive at maximum point. $(\mathbf{H}_i(\mathbf{x}^*) > 0)$. What is the value for the Lagrangean for the i^{th} constraint in this problem?