## Algebra revision - basic concepts

1. Matrix algebra: adding, multiplying, transposition
2. Properties of matrices' determinants
3. Quadratic forms, positive definite matrices
4. Trace and its properties
5. Idempotent matrix, its characteristic roots and its trace

## Problems

1. We have a matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 3 & 1
\end{array}\right], \mathbf{B}=\left[\begin{array}{ll}
2 & 3 \\
1 & 1 \\
2 & 3
\end{array}\right]
$$

Find $2 \mathbf{A}, \mathbf{B}^{\prime}, \mathbf{A}+\mathbf{B}^{\prime}, \mathbf{A B},|\mathbf{A B}|$. Explain why we cannot find $\mathbf{A B}{ }^{\prime}$ i $\mathbf{A}+\mathbf{B}$.
2. We have two quadratic matrices

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right], \mathbf{B}=\left[\begin{array}{ll}
1 & 2 \\
4 & 1
\end{array}\right]
$$

Show that matrix $\mathbf{A}$ is symmetric. Show that $\mathbf{A B} \neq \mathbf{B A}$. Show that matrices $\mathbf{A}$ and $\mathbf{A B}$ are peculiar.
3. Extend (assume that $\mathbf{A}$ are $\mathbf{B}$ are invertible): $(\mathbf{A}+\mathbf{B})(\mathbf{C}+\mathbf{D})^{\prime},(\mathbf{A B})^{-1} \mathbf{B}^{-1},(\mathbf{B A})^{-1} \mathbf{B}^{-1}$, $\mathbf{A}(\mathbf{A}+\mathbf{B})^{-1},|\mathbf{A B}|$.
4. Show that for any invertible $\mathbf{A},\left(\mathbf{A}^{-1}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{-1}$.
5. Show (from the definition), that $\mathbf{X}^{\prime} \mathbf{X}$ is nonnegative definite.
6. Show (applying linear independence) that $\mathbf{X}^{\prime} \mathbf{X}$ is nonpeculiar if the columns of matrix $\mathbf{X}$ are linearly independent.
7. Prove that for matrix $\mathbf{A}$ i $\mathbf{B}$ with right dimensions $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$.
8. Prove that the following holds for a trace of a matrix $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$, $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$.
9. Show that for any idempotent $\mathbf{P}, \mathbf{M}=\mathbf{I}-\mathbf{P}$ is also idempotent. In addition, show that $\mathrm{MA}=\mathbf{0}$.
10. Show that for matrix $\mathbf{P}$ is idempotent for any $\mathbf{A}$ such that $\mathbf{A}^{\prime} \mathbf{A}$ is nonpeculiar:

$$
\mathbf{P}=\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1} \mathbf{A}^{\prime}
$$

