Algebra revision - basic concepts

- 1. Matrix algebra: adding, multiplying, transposition
- 2. Properties of matrices' determinants
- 3. Quadratic forms, positive definite matrices
- 4. Trace and its properties
- 5. Idempotent matrix, its characteristic roots and its trace

Problems

•

1. We have a matrix

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 2 & 1 \\ 1 & 3 & 1 \end{array} \right], \ \mathbf{B} = \left[\begin{array}{rrr} 2 & 3 \\ 1 & 1 \\ 2 & 3 \end{array} \right]$$

Find 2A, B', A + B', AB, |AB|. Explain why we cannot find AB' i A + B.

2. We have two quadratic matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$$

Show that matrix A is symmetric. Show that $AB \neq BA$. Show that matrices A and AB are peculiar.

- 3. Extend (assume that A are B are invertible): $(\mathbf{A} + \mathbf{B}) (\mathbf{C} + \mathbf{D})', (\mathbf{AB})^{-1} \mathbf{B}^{-1}, (\mathbf{BA})^{-1} \mathbf{B}^{-1}, \mathbf{A} (\mathbf{A} + \mathbf{B})^{-1}, |\mathbf{AB}|.$
- 4. Show that for any invertible A, $(\mathbf{A}^{-1})' = (\mathbf{A}')^{-1}$.
- 5. Show (from the definition), that $\mathbf{X}'\mathbf{X}$ is nonnegative definite.
- 6. Show (applying linear independence) that X'X is nonpeculiar if the columns of matrix X are linearly independent.
- 7. Prove that for matrix **A** i **B** with right dimensions $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$.
- 8. Prove that the following holds for a trace of a matrix $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$, $tr(\mathbf{AB}) = tr(\mathbf{BA})$.
- 9. Show that for any idempotent \mathbf{P} , $\mathbf{M} = \mathbf{I} \mathbf{P}$ is also idempotent. In addition, show that $\mathbf{M}\mathbf{A} = \mathbf{0}$.
- 10. Show that for matrix \mathbf{P} is idempotent for any \mathbf{A} such that $\mathbf{A}'\mathbf{A}$ is nonpeculiar:

$$\mathbf{P} = \mathbf{A} \left(\mathbf{A}' \mathbf{A} \right)^{-1} \mathbf{A}'$$