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. . . . . .

Using statistical techniques in business

The role of statistics is to collect, summarize and analyze the data

Two branches of statistics:

Descriptive statistics

Describes the collections of objects (e.g. persons, products, firms) with
respect to their characteristics

Inferential statistics

Techniques which make possible to make conclusions about large
collection of objects (all Poles, all employees in the firm) on the basis
of small portion of this collection

The first part of this lecture will describe the methods of descriptive
statistics and the second part will cover the inferential statistics
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. . . . . .

Population and sample

Population is the collection of objects which is of interest of a given
investigation

population can be finite (e.g. population of firms in Poland) or infinite
(e.g. possible values of a price index)

Sample is the part of the population which is used in investigation

sample is always finite

Sample frame is the list of all the population members
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. . . . . .

Random sample

Simple random sample is sample selected in such a way that each
element of the population has equal chance of being selected.

We say that sample is selected without replacement if an element of
the population can only be selected once to the sample

Sampling is almost always done without replacement
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. . . . . .

Relationship between probability and statistics

.
Definition
..

.

. ..

.

.

Parameter is a descriptive measure computed from or used to describe the
population

Parameter is nonrandom

Value of parameter is our object of interest

However, it is too difficult/costly to collect data in order to calculate
the value parameter
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. . . . . .

Relationship between probability and statistics

.
Definition
..

.

. ..

.

.

Statistic is a descriptive measure computed from or used to describe the
sample

But: statistic is random as sample is randomly chosen

Statistic is either used to estimate (approximate) the parameter or to
make inference about the properties of the parameter

As statistic is random it is necessary to use the laws of probability to
investigate properties of statistic
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. . . . . .

Data sources

Three main sources of data for the researchers and managers:

sample surveys
designed experiments
routine operation

With sample surveys and designed experiments we collect exactly the
data which is needed but they are usually costly

Routine operation data does not often include the information of
interest and it is difficult to gather

Almost always, the construction of the database is the most costly
part of the statistical investigation
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Constructing statistical tables
Grouped data

Ordered array: observations ordered according to their values

class intervals: contiguous, nonoverlapping and exhaustive

usually class intervals are of equal width

grouped data: frequency of the occurrence in class intervals
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. . . . . .

Constructing statistical tables

.
Definition (Frequency distribution)
..

.

. ..

.

.

Frequency distribution is any device which shows the values of the variable
together with the frequency of occurrence of the values

cumulative frequency distribution function: cumulated frequencies
from the first class interval through the preceding interval, inclusive

relative frequencies: proportion of observations within certain class
interval

Using relative frequencies we may construct cumulative relative
frequency distribution

It is important to define class intervals in such a way to obtain
sufficient number of observations in each interval

To obtain the sufficient numbers of observations in class intervals it is
sometimes necessary to define the class intervals with unequal width
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. . . . . .

Example: Analyzing employment structure

September survey of the wage structure classified by profession

Year 2004, Poland

Population: firms, organizations and individuals employing 10 persons
or more

Exceptions: individual farms, NG0s, political parties, trade unions

Sample frame: REGON (National register of economic entities in
Poland)

Sampling: all the entities are obliged to fill questionnaires but on the
firm level the employed are sampled

Number of employed included in the sample depends on employment
in the entity but not in the linear way

Sample is not fully random as probability of being included in the
sample depends on entity size
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Constructing statistical tables
Histogram - grouped data table

Lower Upper Frequency
Relative 

frequency
Cumulative 
frequency

0 - 1000 567 0.093 0.093
1000 - 1500 1199 0.197 0.290
1500 - 2000 1313 0.216 0.506
2000 - 2500 1002 0.165 0.670
2500 - 3000 672 0.110 0.781
3000 - 3500 460 0.076 0.856
3500 - 4000 268 0.044 0.900
4000 - 4500 159 0.026 0.926
4500 - 5000 108 0.018 0.944
5000 - 5500 79 0.013 0.957
5500 - 6000 53 0.009 0.966
6000 - 6500 33 0.005 0.971
6500 - 7000 37 0.006 0.977
7000 - 7500 26 0.004 0.982
7500 - 8000 16 0.003 0.984
8000 - 8500 18 0.003 0.987
8500 - 9000 13 0.002 0.989
9000 - 9500 10 0.002 0.991
9500 - 10000 9 0.001 0.992

10000 - 46 0.008 1.000
Total 6088
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Constructing statistical graphs
Histogram - frequencies
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. . . . . .

Constructing statistical graphs
Histogram - frequencies
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. . . . . .

Constructing statistical graphs
Histogram - relative frequencies
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. . . . . .

Constructing statistical graphs
Histogram - frequency polygon
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. . . . . .

Constructing statistical graphs
Histogram - ogive
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. . . . . .

Constructing statistical graphs
Pie charts
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. . . . . .

Constructing statistical graphs
Pivot table

Man Women
Farming 70.00% 30.00%
Fishery 80.00% 20.00%
Mining 87.38% 12.62%
Industry 65.59% 34.41%
Energy 81.40% 18.60%
Construction 88.24% 11.76%
Trade 53.82% 46.18%
Tourism 36.23% 63.77%
Transportation 69.08% 30.92%
Finance 26.04% 73.96%
Services to firms 57.26% 42.74%
Administration and military 26.35% 73.65%
Education 22.94% 77.06%
Health 18.69% 81.31%
Employed by housholds 55.28% 44.72%
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. . . . . .

Constructing statistical graphs
Bar charts
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. . . . . .

Measures of central tendency

.
Definition (Sample mean)
..

.

. ..

.

.

x =

∑n
i=1 xi

n

Symbol
∑n

i=1 means ”summation from i = 1 to i = n)

for a given sample, the value of the mean is unique

the sum of deviations of observations from the sample mean is equal
to zero

mean is affected by the magnitude of each observation

mean is additive: the mean of the sum of two characteristics is equal
to the sum of means of these characteristics

Note: sample mean is also called arithmetic average
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. . . . . .

Measures of central tendency

.
Definition (Sample median)
..
.
. ..

.

.Median is the value above which lie the half of the values of observation

for a given sample median can always be calculated

if the number of observation is even that it is calculated as a mean of
two observations

the median is not affected by the magnitude of the extreme
observations

median can also be used to characterize the qualitative data

median is not additive
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. . . . . .

Measures of central tendency

.
Definition (Sample mode)
..
.
. ..

.

.

Mode for ungrouped discrete data is the value that occurs most frequently

for some samples mode does not exist (e.g. all values for observations
different)

it can happen that mode is not unique

mode is not additive
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. . . . . .

Example: Analyzing wages of employees

Mean Median Mode

All 2425.3 1986.7 824.0
Men 2634.0 2124.5 824.0
Women 2204.1 1855.0 824.0
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. . . . . .

Dispersion

By dispersion we mean the degree to which values in a set vary
around their mean

Other terms for the same concept are variation, scatter, spread

When values in a set are concentrated around the mean we say that
the dispersion is small
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. . . . . .

Measures of dispersion

.
Definition (Range)
..

.

. ..

.

.

Range is defined as the difference between the largest and the smallest
values in a data set

The range is usually unsatisfactory measure of dispersion as it is
determined only by two most extreme values in the dataset.

Notice that mean deviation is always equal to zero (see properties of
the mean)

Negative and positive deviation should be treated the same
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. . . . . .

Measures of dispersion

.
Definition (Mean absolute deviation)
..

.

. ..

.

.

MAD (x) =

∑n
i=1 |xi − x |

n

The mean absolute deviation is an intuitive measure of variation but
it is not popular because of troublesome mathematical properties
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. . . . . .

Measures of dispersion

.
Definition (Sample variance)
..

.

. ..

.

.

s2
x =

∑n
i=1 (xi − x)2

n − 1

Properties of the variance

variance of yi = axi is equal to s2
y = a2sx so that the change of units of

x results in change of variance which is proportional to the square of a
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. . . . . .

Measures of dispersion

.
Definition (Sample standard deviation)
..

.

. ..

.

.

sx =
√

s2
x

The main advantage of the standard deviation over variance is that
for yi = axi , the standard deviation sy = asx .
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. . . . . .

Measures of dispersion

.
Definition (Coefficient of variation)
..

.

. ..

.

.

cv =
sx
x

Range, mean absolute deviation, variance and standard deviation all
depend on the units

Therefore these measures cannot be to compare dispersion of the
characteristics expressed in different units

As coefficient of variation for yi = axi and xi are equal the coefficient
of variation is dimensionless number

Therefore it can be used for comparisons of dispersion of variables

Coefficient of variation should not be used if the mean x is close zero
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. . . . . .

Example: Analyzing the wages of employees

Max Min Range Variance
Mean 

absolute 
deviation

Standard 
deviation

Coefficient 
of variation

All 46841.0 659.2 46181.8 3735495.2 1096.8 1932.7 0.80
Men 46841.0 776.6 46064.4 5352659.8 1256.0 2313.6 0.88
Women 21057.3 659.2 20398.1 1926973.5 912.9 1388.2 0.63
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. . . . . .

Descriptive measures for grouped data

In the case of grouped data we only know that the observation in a
class interval but we do not know the exact value

Class mark xi is the midpoint of the interval

Frequency fi is the number of observations in the interval

Sample mean

x =

∑n
i=1 xi fi
n

Sample variance

s2 =

∑n
i=1 (xi − x)2 fi

n − 1

Standard deviation
s =

√
s2
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. . . . . .

Gross domestic product
Production side

gross output: sum of outputs of all the sectors in economy

intermediate consumption: sum of all the products used in production
of output

gross value added = gross output-intermediate consumption

gross value added
intermediate consumption

}
gross output

Taxes and subsides: indirect taxes levied on products

gross domestic product (GDP) = gross value added+taxes-subsidies

GDP measures the total production of final goods in an economy

gross value added
taxes-subsidies

}
GDP
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. . . . . .

Example: Analysing Polish Gross Domestic Product
Data - year 2008, 4 quarter

Final Consumption Expenditure 247839,3
Individual Consumption 192669,5
Public Consumption  Expenditure 52401
NPISH 2768,8
Gross Capital Formation 54228
Gross Fixed Capital Formation 45348,5
Changes in Inventories 8879,5
Domestic Uses 302067,3
Exports 126996,6
Import 135010,1
Trade balance -8013,5
Gross Domestic Product 294053,8
Gross Value Added 261666,5
Taxes-subsidies 32387,3
Industry 60961,5
Construction 15036
Other Production 11112,3
Trade and Repair 58359,6
Transport, Storage and communication 16454,9
Other Market Services 58895,4
Non-Market Services Sector 40846,8
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. . . . . .

Example: Analysing Polish Gross Domestic Product
Production side
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. . . . . .

Gross domestic product
Expenditure side - consumption

private consumption: purchases of market products, value of imputed
rents for dwellings occupied by owners, etc.

public consumption: value of services in education, culture and
national heritage, health care, public administration, national defence,
scientific and research activity, etc. provided by the government

NPISH: Non-Profit Institutions Serving Households

final consumption = private consumption+public
consumption+NPISH

private consumption
public consumption
NPISH

final consumption
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. . . . . .

Gross domestic product
Expenditure side - capital formation

gross fixed capital formation: outlays on tangible and intangible fixed
assets

changes in inventories: changes in inventories of raw materials,
work-in-progress production, and final goods

gross capital formation = gross fixed capital formation+changes in
inventories

gross fixed capital formation
changes in inventories

}
gross capital formation
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. . . . . .

Gross domestic product
Expenditure side - domestic demand and trade balance

domestic demand = final consumption+gross capital formation

foreign trade balance = exports-imports

gross domestic product = domestic demand-foreign trade balance

final consumption
gross capital formation

}
domestic demand

foreign trade balance

GDP
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Example: Analysing Polish Gross Domestic Product
Expenditure side - domestic demand
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. . . . . .

Example: Analysing Polish Gross Domestic Product
Expenditure side - domestic demand and GDP
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Example: Analysing Polish Gross Domestic Product
Trade balance
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Price indexes
Aggregated expenditure

Aggregated expenditure in time for items i = 1, 2, .., k is:

E =
k∑

i=1

piqi =
k∑

i=1

Ei

where pi represents price of good i , qi is the quantity of good i
bought, and Ei is the expenditure for good i in time t

An obvious measure of the change of price of good i it the ratio of
price its price in time t = 0 and t = 1

Pi =
p∗
i

pi

But, how to measure the change of prices for an aggregated
expenditure E?
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. . . . . .

Price indexes
Constant quantities

Assume that for all i the the quantities sold in time t = 0 and t = 1
are the same

Then the change of prices can be measured as follows

P =

∑k
i=1 pi ,1qi∑k
i=1 pi ,0qi

=

∑k
i=1

pi,1

pi,0
qipi ,0∑k

i=1 pi ,0qi

=
k∑

i=1

Pi
Ei

E
=

k∑
i=1

Piwi

where wi = Ei
E is a share of expenditure for good i

P is then the prices index calculated as a weighted average with
weight equal to shares in expenditure

In practice, the quantities are seldom constant across periods

The price indexes for aggregate expenditure is calculated with the
expenditure pattern from initial or final period
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. . . . . .

Price indexes

.
Definition (Lespeyres index)
..

.

. ..

.

.

PL =

∑k
i=1 pi ,1qi ,0∑k
i=1 pi ,0qi ,0

=
k∑

i=1

Pi ,1wi ,0

where wi ,0 =
Ei,0

E0
is a share of expenditure for good i in time t = 0

Lespeyres index is calculated as a weighted average of price change of
individual good with weight equal to shares of this goods in
expenditure in initial period

Lespeyres can be interpreted as ratio of the cost of basket of goods
from initial period bought at prices from final period to the cost of
the same basket bought at prices from initial periods
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. . . . . .

Price indexes

.
Definition (Paasche index)
..

.

. ..

.

.

PP =

∑k
i=1 pi ,1qi ,1∑k
i=1 pi ,0qi ,1

=
k∑

i=1

Piwi ,1

where wi ,1 =
Ei,1

E1
is a share of expenditure for good i in time t = 1

calculated at prices from time t = 0.

Paasche index is the prices index calculated as a weighted average of
price change of individual good with weight equal to shares of this
goods in expenditure in final period

Paasche index can be interpreted as ratio of the cost of basket of
goods from final period bought at prices from final period to the cost
of the same basket bought at prices from initial periods
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. . . . . .

Price indexes – comparison

The price index should measure how much more/less money we need
to maintain the same utility level

The basket of goods bought is changing over time as consumers react
to price changes

Quantities bought for goods which become relatively more expensive
are decreasing

Then Lespeyres index overstate inflation because it does not take into
account the possibility of quantity adjustments

For similar reason Paasche index understate inflation.

Lespeyers index is much more popular that Paasche index as it is
easier to collect data on prices then on quantities
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. . . . . .

Price indexes
The consumer price index (CPI) and producer price index (PPI)

Two types of data used: price data and weight data

Price data collected from sample of sales outlets

Weight data taken from household data surveys

CPI is fixed weight index but seldom a true Lespeyers index as
weights are sampled less frequently that prices

Producer price index is changes of prices domestic producers receive
for their products

This index is now less important as the share of production in GDP is
decreasing
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. . . . . .

Price indexes
GDP in real terms and GDP deflator

Nominal GDP is GDP calculated at current prices
Real GDP is defined as GDP at prices from the base period
GDP deflator is equal to

Deflator =
Nominal GDP

Real GDP
If base year price level is t − 1 then

Deflatort =

Nominal GDPt
Nominal GDPt−1

Real GDPt
Nominal GDPt−1

=
Nominal GDP growth

Real GDP growth

GDP deflator is measuring how much of the rise of GDP is caused by
changes in prices
GDP deflator can be used to transform data GDP in nominal terms
into GDP in real terms

Real GDP growth =
Nominal GDP growth

Deflator
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. . . . . .

Price indexes
Example: GDP deflator year 2007

Nominal GDP 2006 1060031.4
Nominal GDP 2007 1175266.3
Nominal growth GDP 110.9
Real growth 106.7
GDP deflator 103.9

Nominal GDP growth =
1060031.4

1175266.3
× 100% = 110.9%

GDP deflator =
110.9

106.7
= 103.9
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. . . . . .

Price indexes
Type of indexes and chained index

Corresponding period of previous year=100 (quarter to quarter,
month to month)

Chain index: previous period=100 (quarter to previous quarter,
month to previous month)

On the basis of chain index it is possible to approximate inflation
between two arbitrary periods

Index of inflation (no weight changes)

P t/t−k =
pt

pt−k
=

pt

pt−1

pt−1

pt−2
· · · pt−k−1

pt−k

= P t/t−1P t−1/t−2 · · ·P t−k−1/t−k

This kind of index is known as chained index of inflation
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. . . . . .

Example: Constructing CPI deflator from inflation data.
Deflating the employee wages

Month i/(i-12) i/(i-1)
CPI deflator (2006 

XII = 100%)

Wages in 
enterprise 

sector

Real wages in 
enterprise 

sector, base 
2006 XII

2007 I 101.6 100.4 100.4 2663.6 2652.9

2007 II 101.9 100.3 100.7 2687.5 2668.8

2007 III 102.5 100.5 101.2 2852.7 2818.8

2007 IV 102.3 100.5 101.7 2786.3 2739.4

2007 V 102.3 100.5 102.2 2776.9 2716.6

2007 VI 102.6 100.0 102.2 2869.7 2807.4

2007 VII 102.3 99.7 101.9 2893.7 2839.4

2007 VIII 101.5 99.6 101.5 2886.0 2843.2

2007 IX 102.3 100.8 102.3 2858.8 2794.1

2007 X 103.0 100.6 102.9 2951.7 2867.6

2007 XI 103.6 100.7 103.7 3092.0 2983.1

2007 XII 104.0 100.3 104.0 3246.0 3122.3

2008 I 104.0 100.7 104.7 2969.7 2836.6

2008 II 104.2 100.4 105.1 3032.7 2885.3

2008 III 104.1 100.4 105.5 3144.4 2979.7

2008 IV 104.0 100.4 106.0 3137.7 2961.5

2008 V 104.4 100.8 106.8 3069.4 2874.0

2008 VI 104.6 100.2 107.0 3215.3 3004.6

2008 VII 104.8 100.0 107.0 3229.0 3017.4

2008 VIII 104.8 99.6 106.6 3165.1 2969.6

2008 IX 104.5 100.3 106.9 3171.7 2966.8
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. . . . . .

Example: Constructing CPI deflator from inflation data.
Deflating the employee wages
Calculations

CPI deflator in February 2007

100.4% × 100.3%

100%
= 100.7%

Wage in February expressed in prices from December 2006

2687.5 zÃl

100.7%
× 100% = 2668.8 zÃl

CPI deflator in March 2007

100.7% × 100.5%

100%
= 101.2%

Wage expressed in prices from December 2006

2852.7 zÃl

101.2%
× 100% = 2818.8 zÃl
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Example: CPI in Poland
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Time series

Time series is the sequence of data point measured at successive times

Time series analysis comprises of methods which

can be used to uncover the properties of the time series
can be used to forecast the future values of the series

Base assumption: observations close which are close in time are more
closely related than observations further apart
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Time series

.
Definition (Simple moving average)
..

.

. ..

.

.

st =
1

k

k−1∑
i=0

xt−i

Notice that

st =
xt + xt−1 + . . . + xt−k+1

k
= st−1 +

xt − xt−k

k

Choice of k is arbitrary - the larger is k, the more smooth is the series

For smaller k, st is more responsive to changes in the series, for larger
k, st is more smooth

Notice that for first k − 1 values of the original series it is not possible
to calculate st
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Example: Smoothing the WIG volume index with moving
average
Raw data
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Example: Smoothing the WIG volume index with moving
average
Moving average k=10
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Example: Smoothing the WIG volume index with moving
average
Raw data, moving average k=10
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Time series

.
Definition (Exponential smoothing)
..

.

. ..

.

.

s0 = x0

st = αxt + (1 − α) st−1 = st−1 + α (xt − st−1)

The higher is α the more smooth is the smoothed series

The choice of α is often arbitrary

Statistical techniques can be used to find optimal value of α by
estimation of ARIMA(0, 1, 1) model
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Example: Exponential smoothing of the WIG volume index
Raw data, exponential smoothing
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. . . . . .

Time series
Seasonality

Seasonality means that in the series we observe periodic fluctuations

Seasonality is very common in economic time series

Usually seasonality is either related seasons of the year of the time of
the day

Seasonal adjustment are used in order to remove seasonal effects to
better reveal non-seasonal features

Seasonality can also be used for better forecasting the future value of
the series

Statistical offices most often used for seasonal adjustments either X11
(US) and Tramo/Seats (EU)

These methods are also adjusting time series for the variation of the
number of workdays in a month/quarter
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Example: Nominal GDP in Poland
Raw Q/Q data and moving average
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Example: Comparing the seasonally adjusted and
unadjusted real GDP growth Q/Q data for Poland
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Interpretations of probability
Objective interpretation - classical interpretation

if there is N mutually exclusive and equally likely possibilities of
occurrence of an event and if m of these possibilities have
characteristic E the probability of E is equal to

Pr (E ) =
m

N

.
Example
..

.

. ..

.

.

Possible number of pips for a cube dice are 1, 2, 3, 4, 5, 6, so N = 6. If pips
are equally likely to obtain than probability of obtaining e.g. 2 pips is
equal to 1

6 . The probability of obtaining the even number of pips is equal
to 3

6 = 1
2
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Interpretations of probability
Objective interpretation - classical interpretation

suppose that some that some process is repeated N times and m of
resulting events have characteristics E . For N large, probability of E
is approximately equal to

Pr (E ) =
m

N

.
Example
..

.

. ..

.

.

When we say that the probability of obtaining even number of pips for a
dice is equal to 1

2 we mean that for a large number of rolls for about half
of them we obtain an even number of pips.
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Interpretations of probability
Subjective interpretation of probability

Subjective interpretation of probability

probability is the measure of the confidence in the truth of certain
proposition

Subjective interpretation of the probability is useful for events which
nature is unknown an which cannot be repeated

.
Example
..

.

. ..

.

.

When we say that the probability of depression in Poland in the next year
is equal to 1

10 we it means that we are not really confident that this event
will place

The interpretation of probability does not influence its properties
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Set

Set is a collection of objects

If all the elements of set B belong to set A we say that B is a subset
of A

Empty set is denoted as ∅

.
Example
..
.
. ..

.

.

A = {1, 2, 3, 4, 5, 6} and B = {2, 4, 6} . B is a subset of A
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Sets
Union of sets

Set which consists of all the elements which are in set A or in set B is
denoted as A ∪ B

A ∪ B is called the union of sets A and B

.
Example
..
.
. ..

.

.

A = {1, 3, 5} and B = {2, 3, 6}, A ∪ B = {1, 2, 3, 5, 6}
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Sets
Intersection of sets

Set which consists of all the elements which are in set A and in set B
is denoted as A ∩ B

A ∩ B is called the intersection of sets A and B

.
Example
..
.
. ..

.

.

A = {1, 3, 5} and B = {2, 3, 6}, A ∩ B = 3
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Sets
Difference of sets

Set which consists of all the elements which are in set A and not in
set B is denoted as A \ B

A \ B is called the difference of sets A and B

.
Example
..
.
. ..

.

.

A = {1, 3, 5} and B = {2, 3, 6}, A \ B = {1, 5}
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Fundamental properties (axioms) of probability

Outcome is a possible result of a process of interest

Set of all possible outcomes is called the sample space an denoted as
Ω

Event is a subset of sample space

...1 Probability of an event E is between 0 and 1

0 ≤ Pr (E ) ≤ 1

...2 Probability of occurrence of one out of all possible outcomes
(probability space) is equal to 1

Pr (Ω) = 1

...3 If events E1,E2 are mutually exclusive (E1 ∩ E2 = ∅) then the
probability of occurrence of either E1 or E2 is equal to

Pr (Ei ∪ Ej) = Pr (Ei ) + Pr (Ej)
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Complementary events

Complementary event consist of all the outcomes which can occur if
A does not happen

Event complementary to A is denoted as A′

Probability that event A does not occur is equal to

Pr
(
A′) = 1 − Pr (A)
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Complementary events

.
Example
..

.

. ..

.

.

The probability of obtaining an odd number of pips when rolling a dice is
equal to one minus probability of obtaining even number of pips:

Pr (Odd) = 1 − Pr (Even)

.
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Probability of union (addition rule)

Probability that event A or event B occurs is calculated is equal to

Pr (A ∪ B) = Pr (A) + Pr (B) − Pr (A ∩ B)

.
Example
..

.

. ..

.

.

What is the probability of obtaining the number of pips which is even or
divisible by 3? Denote by A = {2, 4, 6} and B = {3, 6} then

Pr (A ∪ B) = Pr ({2, 3, 4, 6}) =
4

6

Pr (A ∪ B) = Pr (A) + Pr (B) − Pr (A ∩ B)

= Pr ({2, 4, 6}) + Pr ({3, 6}) − Pr ({6})

=
1

2
+

1

3
− 1

6
=

4

6
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. . . . . .

Independent events

.
Definition (Independent events)
..

.

. ..

.

.

Random events A and B are independent if

Pr (A ∩ B) = Pr (A) Pr (B)

.
Example
..

.

. ..

.

.

Assume that two rolls of a dice are independent. What is the probability of
obtaining 6 twice?
Denote probability of obtaining 6 in the first roll as A and in the second
roll B. Assume that Pr (A) = Pr (B) = 1

6 then

Pr (A ∩ B) = Pr (A) Pr (B) =
1

6
× 1

6
=

1

36
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Conditional probability

.
Definition (conditional probability)
..

.

. ..

.

.

If we know that random event B have taken place than probability of
random event A conditional on this information is called conditional
probability of A given B and is equal to

Pr (A|B) =
Pr (A ∩ B)

Pr (B)

Notice that for independent event A and B

Pr (A|B) =
Pr (A ∩ B)

Pr (B)
=

Pr (A) Pr (B)

Pr (B)
= Pr (A)

So: the information about an independent event B does not influence
our assessment of the probability of event A
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Conditional probability

.
Example
..

.

. ..

.

.

We know that the number of pips obtained in a roll is even. What is the
probability of obtaining 1, 2, 6 pips in this roll conditional on this
knowledge?

Pr ({1, 2, 6}| {2, 4, 6}) =
Pr ({1, 2, 6} ∩ {2, 4, 6})

Pr ({2, 4, 6})

=
Pr ({2, 6})

Pr ({2, 4, 6})
=

2/ 6

3/ 6
=

2

3
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Random variable

Random variable is a variable which value depends on a random event

The value of a random variable can not be predicted with certainty

A random variable can be:

qualitative: the value such variable have no quantitative interpretation
but is coding same attribute (e.g. sex, occupation, place of residence).
quantitative

discrete: such random variable have integer values or can be
transformed into variable with integer values (e.g. number of children,
number of visits in a shop)
continuous: can take any real value (e.g. spending for food, profit/loss
of a firm)

We will denote the random variables with capital letters and the
values of random variables by lowercase letters

So: Pr (X = x) denotes the probability of the event that random
variable X is equal to x

Jerzy Mycielski (CMT) Quantitative Methods of Decision Making 2008 77 / 146



. . . . . .

Independent random variables

Random variables X and Y are independent if probability of an event
that X = x and Y = y is given by

Pr (X = x ∪ Y = y) = Pr (X = x) Pr (Y = y)

for all possible values of y and x

.
Example
..

.

. ..

.

.

The results of two rolls of the dice can be considered independent if the
probabilities of the events are looking as follows

1 2 3 4 5 6

1 1
36

1
36

1
36

1
36

1
36

1
36

2 1
36

1
36

1
36

1
36

1
36

1
36

3 1
36

1
36

1
36

1
36

1
36

1
36

4 1
36

1
36

1
36

1
36

1
36

1
36

5 1
36

1
36

1
36

1
36

1
36

1
36

6 1
36

1
36

1
36

1
36

1
36

1
36
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. . . . . .

Expectation

.
Definition (Expected value)
..

.

. ..

.

.

For discrete random variable X that is taking values x1, x2, . . . , xn with
probabilities p1, p2, . . . , pn respectively, the expected value is equal to

E (X ) =
n∑

i=1

xipi

Notice that as
∑n

i=1 pi = 1 then the expected value is the weighted
average with weights equal to probabilities

Expected value is the population mean of the random variable

The expected value can be interpreted (under some conditions) as
what you expect to be an average value for X calculated for large
number of observations

For any nonrandom number a expected value of y = a + bX is

E (Y ) = E (a + bX ) = a + b E (X )
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Expectation
Example

.
Example
..

.

. ..

.

.

What is the expected number of pips for a dice roll?

E (X ) = 1 × 1

6
+ 2 × 1

6
+ 3 × 1

6
+ 4 × 1

6
+ 5 × 1

6
+ 6 × 1

6
=

7

2

What is the expected value of the number of pips multiplied by 2 plus 1?

E (2X + 1) = 8

Notice that expected value of X can be equal to value which can not
be observed for X
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Variance

.
Definition (Variance)
..

.

. ..

.

.

For discrete random variable X that is taking values x1, x2, . . . , xn with
probabilities p1, p2, . . . , pn respectively, the variance is equal to

Var (X ) =
n∑

i=1

[xi − E (X )]2 pi

Notice that for any nonrandom numbers a, b variance of y = a+bX is

Var (Y ) = Var (a + bX ) = b2 E (X )

Standard deviation of the random variable is equal to
√

Var (X )

Variance of a random variable can be taught of as the population
variance of random variable
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. . . . . .

Variance
Example

.
Example
..

.

. ..

.

.

What is the population variance of the number of pips for a dice roll?

Var (X ) =

(
1 − 7

2

)2

× 1

6
+

(
2 − 7

2

)2

× 1

6
+

(
3 − 7

2

)2

× 1

6

+

(
4 − 7

2

)2

× 1

6
+

(
5 − 7

2

)2

× 1

6
+

(
6 − 7

2

)2

× 1

6

=
35

12

What is the variance of the number of pips multiplied by 2 plus 1?

Var (2X + 1) = 4Var (X ) =
35

3
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Expectation of the sum of random variables

The expected value of the sum is equal to the sum of expected values

E (aX + bY ) = a E (X ) + b E (Y )

This property also holds for a number of variables larger then 2

.
Example
..

.

. ..

.

.

What is the expected return from package of assets containing 0.2 of asset
X and 0.8 of asset Y?

E (0.4 × X + 0.6 × Y ) = 0.4 E (X ) + 0.6 E (Y )
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Variance of the sum of independent random variables

The variance of the sum of independent random is equal to the sum
variances

Var (aX + bY ) = a2 E (X ) + b2 E (Y )

This property also holds for a number of variables larger then 2

.
Example
..

.

. ..

.

.

What is the variance and standard deviation of return from package of
assets containing 0.2 of asset X and 0.8 of asset Y assuming that X and
Y are independent and have the same variance σ2?

Var (0.4 × X + 0.6 × Y ) = 0.42 Var (X )+0.62 Var (Y ) = 0.16σ2+0.36σ2 = 0.52σ2

√
0.4 × X + 0.6 × Y =

√
Var (0.52 × σ2) = 0.72σ2

Notice that the standard deviation of the portfolio is smaller that standard
deviation of each of the assets being included in the portfolio
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Probability distribution of discrete random variables

.
Definition
..

.

. ..

.

.

Probability distribution of a discrete random variable is a table, function or
graph which specifies the all the possible values of the random variable,
along with their respective probabilities

.
Example
..

.

. ..

.

.

Probability distribution of number of pips being the result of the dice roll
can be specified as follows
Value of X 1 2 3 4 5 6

Probability 1
6

1
6

1
6

1
6

1
6

1
6
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. . . . . .

.
Definition
..

.

. ..

.

.

Cumulative distribution function (cdf) of the random variable is given by
function F (x) = Pr (X ≤ x)

Cdf is equal to probability that the random variable X is smaller or
equal to x

Cdf is equivalent to probability distribution as it is possible to
calculate the probability of all the events on the basis of Cdf

.
Example
..

.

. ..

.

.

Probability distribution of number of pips being the result of the dice roll
can be specified as follows
Value of X 1 2 3 4 5 6

Probability 1
6

1
3

1
2

2
3

5
6 1
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Probability distribution of discrete random variables
Bernoulli distribution

Bernoulli distribution is the distribution of a variable X which
assumes only two values 1 and 0 with probabilities p and q = 1 − p
Usually the variable in question is a qualitative variable and its values
are related to some mutually exclusive outcomes
These outcomes can be related to success or failure of some action,
product being not defective or defective etc.
The expected values of X is

E (X ) = 1 × p + 0 × q = p

The variance of X is

Var (X ) = (1 − p)2 p + (0 − p)2 × q = q2p + p2q = (q + p) pq = pq

.
Example
..

.

. ..

.

.

What is the expected value and variance of a random variable X which
takes value 1 if the number of pips for the dice roll is equal to 1 or 2 and
zero otherwise?

E (X ) =
1

3

Var (X ) =
1

3
× 2

3
=

2

9
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Probability distribution of discrete random variables
Bernoulli process

The Bernoulli process is the sequence of independent trials with
outcomes coded into random variables Xi having Bernoulli distribution

The number of trials ended with success (Xi = 1) can be calculated
as Y =

∑n
i=1 Xi

That expected number successes (Y ) is equal to

E (Y ) = E

(
n∑

i=1

Xi

)
=

n∑
i=1

E (Xi ) = np

As trials are assumed to be independent the variance of Y is equal to

Var (Y ) = Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var (Xi ) = npq
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Probability distribution of discrete random variables
Bernoulli process, example

.
Example
..

.

. ..

.

.

We know that the probability of our product being defective is 1
100 and

that defects are independent. What is the expected value and the variance
of the number of defective products among 200 produced?
Define the random variable Xi which is equal to 1 if product i is defective
Xi = 1 equal to 0 if product is not defective. The number of products
which are defective is equal to Y =

∑200
i=1 Xi . The expected number of

defective products is equal to

E (Y ) = 200 × 1

100
= 2

Using the assumption that defects are independent we obtain the variance

Var (Y ) = 200 × 1

100

99

100
=

99

50

Jerzy Mycielski (CMT) Quantitative Methods of Decision Making 2008 89 / 146



. . . . . .

Probability distribution of discrete random variables
Binomial distribution

.
Definition (Binomial distribution)
..

.

. ..

.

.

Pr (X = k) =

(
n

k

)
pkqn−k

Binomial distribution gives the probability of the number of successes
in Bernoulli process

.
Example
..

.

. ..

.

.

Calculate the probability that the number of defective products among 5
product is smaller or equal to 2 if the probability of defect is equal to 1

4
and defects are independent.(

5

0

) (
3

4

)5

+

(
5

1

)(
3

4

)4 1

4
+

(
5

2

)(
3

4

)3 (
1

4

)2

=
243

1024
+

405

1024
+

135

512
=

459

512
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Probability distribution of continuous random variables
Density function

Density function of a continuous random variable can be thought as
an analogue of the relative frequency function

However, density function can not usually be interpreted as
probability of event Pr (X = x)

For continuous random variable probability of event that X = x is
equal to zero

Density function is of X is often as f (x)

So the density function can be understood as intensity of probability
in a given interval.
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Probability distribution of continuous random variables
Cumulative distribution function, continuous variable

Cumulative distribution function of a continuous random variable can
be thought as an analogue of cumulative relative frequency function

As cumulative distribution function of a discrete variable the cdf for
continuous variable is define as F (x) = Pr (X ≤ x)

Some properties of F (x)

F (x) is nondecreasing for all x
F (x) goes to 0 for x going to minus infinity
F (x) goes to 1 for x going to infinity
probability of event X > x can calculated as follows

Pr (X > x) = 1 − Pr (X ≤ x) = 1 − F (x)
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Normal distribution and related distributions
Standard normal distribution

The normal distribution with µ = 0 and σ2 = 1 is called standard
normal distribution

Normal density, µ = 0, σ2 = 1

Normal distribution is the most important distribution in statistics
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Normal distribution and related distributions
Properties of normal distribution

Normal distribution is symmetric

The shape of normal distribution is uniquely determined by its
expected value µ and variance σ2

The sum of variables with normal distribution has also normal
distribution

Applications: for large number of observations the distribution of the
sample mean can be approximated with normal distribution
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Decision theory

Deals with the problem of identifying best decisions

A large part of the theory is concentrated on taking decisions under
uncertainty

The simpler part of the theory is based on assumptions that the
decision maker have perfect knowledge about

possible outcomes
payoffs related to outcomes
probabilities of outcomes

These assumptions are not very realistic
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Decision tree

The decision tree is a graphical representations of the our knowledge
about reality

The decision taken: the one which maximises expected PV from the
project
Is it a valid criterion?
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Objective variables

Objective variables are variables which are maximised/minimised
when taking optimal decision

Simplest case: one objective variable optimized (e.g. profit, utility)

Typical problem in decision making: how to maximise profit but to
minimise the risk?
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Payoff table

Payoff is the value of the objective variable for a given outcome

Payoff table is a table of payoffs for all possible outcomes for all
possible decisions

For decisions taken under uncertainty the payoff table should also
specify the probabilities of outcomes
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Expected payoff

Expected payoff is the expected value of the objective variable for
outcomes of a given decision

The expected payoff from the decision can easily be calculated on the
basis of the payoff table
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Example: credit scoring

Choice of the optimal threshold for credit scoring decisions

Bank has estimated pi which gives the probability of credit of 10000
zÃl being paid off for client i

pi estimate is based on characteristics of the client i

Profit if the credit was paid is 2000 zÃl, average loss if the credit is a
default is 10000.

How the payoff table looks like?

What is the minimum acceptable value of pi if bank maximises it
expected profit?

Jerzy Mycielski (CMT) Quantitative Methods of Decision Making 2008 100 / 146



. . . . . .

Example: credit scoring
Solution

Payoff table

success failure

probability pi 1 − pi

accepted 2000 −10000

rejected 0 0

Expected payoff from accepting
a = 2000 × pi − 10000 × (1 − pi ) = −10000 + 12000 × pi

Expected payoff from rejecting b = 0 × pi − 0 × (1 − pi ) = 0

If a > b application is accepted:

−10000 + 12000 × pi > 0

pi >
5

6
≈ 0.83

The minimum probability of success for accepted applications 0.83
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Utility and risk

What should be the criterion when we are taking decisions?

Expected payoff - but then what about the risk?
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Example: calculating the maximum acceptable price of
insurance policy

Why people want buy insurance and how it is possible that it is
possible to buy insurance?

Assume that utility function is of the form U =
√

x .

Say that an individual is considering of insuring his car.

His car has value of 40000$ and he believe that with probability 10%
he can have in a given year an accident reducing the value of the car
to 10000$

Following outcomes are possible

good outcome bad outcome

probability 9
10

1
10

payoff 40000 10000
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Example: calculating the maximum acceptable price of
insurance policy
Customer side

Expected utility of payoffs is 9
10 ×

√
40000 + 1

10 ×
√

10000 = 190.0

Say that the cost of policy providing full coverage is v .

What is the maximum amount individual will agree to pay for the
policy?

As the policy provides full coverage, individual is sure that he will
have 40000 − v

Now calculate for what v the utility of this amount of money is equal
to expected utility when not insured

190 =
√

40000 − v

v = 40000 − 1902 = 3900

So the maximum the individual will pay for insurance is 3900
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Example: calculating the maximum acceptable price of
insurance policy
Insurer side

From the point of view of the insurer the payoff table is the following:

good outcome bad outcome

probability 9
10

1
10

payoff v v − 30000

Assume that insurance firm can diversify the risk by selling a lot of
insurance policies

In this risk of insurer is close to zero, and the his expected profit
made on the policy is equal to

E (Profit) =
9

10
v +

1

10
(v − 30000) = v − 3000

This implies that for all the prices of the insurance policy in between
3000 and 3900 is beneficial both for the insurer and the individual.
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Sampling distributions

.
Definition
..

.

. ..

.

.

Sampling distribution is the distribution of the values of some statistic
computed from randomly drawn samples of the same size
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Law of large numbers

The larger is the sample the sample size, the smaller is the size of the
variance of the mean

the smaller is the variance the higher is the probability that the
deviation of the sample mean from the population mean is larger than
a given value

.
Theorem (Law of Large Numbers)
..

.

. ..

.

.

For N going to infinity the probability that the value of sample mean is
close to population mean goes to one.
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The central limit theorem

.
Theorem (Central Limit theorem)
..

.

. ..

.

.

For large number of observations in the random sample the distribution of
the sample mean is close to normal distribution with expected value equal
to µ and variance equal to σ2

n

In practice we often replace the population variance σ2 with sample
sample variance s2

x

Approximating sampling distribution with normal distribution we
obtain much more precise albeit less robust estimates of the
probability
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The meaning of “Large sample”

Large sample is a sample large enough that CLT works

Is is said that sample with size larger than 30 are big enough to CLT
work reasonably well
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Example: binomial distribution

We know that the probability of product to be defective is p = 0.05.
Calculate the probability that in the random sample containing 100
products we obtain the estimate of p which is smaller then 0.02.

Estimate of p is given by p̂ = k
n

Distribution of p̂ is given by binomial distribution with values of k
divided by n.

Exact number: we obtain the estimate of 0.02 for three case k = 0,
k = 1 and k = 2. Probability of this event is equal to(

100

0

)
× 0.050 × (0.95)100 +

(
100

1

)
× 0.051 × (0.95)99

+

(
100

2

)
× 0.052 × (0.95)98 = 0.118 26

Jerzy Mycielski (CMT) Quantitative Methods of Decision Making 2008 110 / 146



. . . . . .

Example: binomial distribution

Normal approximation:

expected value µ = 0.05,

standard deviation σ =
√

pq
n =

√
0.05×0.95

100 = 0.02179

Standardization z = 0.02−0.05
0.02179 = −1. 376 8

Continuity correction z = 0.025−0.05
0.02179 = −1. 147 3

Approximated probability

without continuity correction Φ (−1. 376 8) = 0.08428
with continuity correction Φ (−1. 147 3) = 0.12562
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Distribution of the sample proportion

Sample mean for the estimate of sample proportion is given by the
mean of n variables with Bernoulli distribution

p̂ =
k

n
=

∑N
i=1 xi

n
= x

Variance of p̂ is equal σ2
p = pq

n

Assume that CLT works

Variable p̂ has approximately normal distribution with expected value
µ = p and variance σ2

p = pq
n
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Estimator

.
Definition (Estimator)
..

.

. ..

.

.

Estimator is a statistic which is designed to estimate (approximate) an
unknown sample parameter

.
Example
..

.

. ..

.

.

We do not know before the election the proportion of the people who will
vote for politician A. We collect the a sample of answers and calculate the
share of answers of people who declare they will vote for A. This share is
our estimate of unknown population parameter and the procedure itself
defines the estimator.
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Confidence intervals

To provide exact definition of precision of an estimate of population
parameter.

Intuitively high precision means that with high confidence we believe
that an estimate is not deviating much from the value of estimate
parameter

We have to specify what we mean by ”high confidence” and ”not
deviating much”

Jerzy Mycielski (CMT) Quantitative Methods of Decision Making 2008 114 / 146



. . . . . .

Confidence intervals
Obtaining confidence intervals

.
Definition
..

.

. ..

.

.

Confidence interval is an interval which is containing true value of the
parameter with a given probability

The probability specified when defining the confidence interval is
called confidence level and is usual denoted as 1 − α
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Confidence intervals
Interpretation of confidence intervals

Probabilistic interpretation: 100 × (1 − α)% of the intervals
calculated on the basis of the large number of samples contain the
true value of the population parameter.

Practical interpretation: with 100 × (1 − α)% confidence we believe
that the confidence interval contains the true value of the population
parameter
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Confidence intervals
Confidence intervals for means for known and unknown population variance

Usually we use the symmetric confidence intervals of the form:

Pr
(
x − z1−α

2
σx , x + z1−α

2
σx

)
= 1 − α

z1−α
2

is called reliability coefficient
z1−α

2
σx is the precision of the estimate

Denote as Φ−1 (α) the inverted normal cdf - this function gives such
x for which Pr (X < x) = α
x is normally distributed, standard deviation is known and equal to σ.

σx = σ√
n
, z1−α

2
= Φ−1

(
1 − α

2

)
.

x is normally distributed, standard deviation not known.

σ̂x = sx√
n
, z1−α

2
= F−1

(
1 − α

2

)
where F is the cdf of t-student

distribution with n − 1 degrees of freedom

x is not normally distributed, standard deviation not known, sample
large

σx = sx√
n
, z1−α

2
= Φ−1

(
1 − α

2

)
.
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Confidence intervals
Confidence intervals for proportions

We already know that the sampling distribution of the mean p̂ = k
n

for variables with Bernoulli distribution has:

expected value p

variance pq
n = p(1−p)

n

For large sample variance of p̂ can be estimated as s2
p = p̂(1−p̂)

n and

standard deviation as sp =
√

p̂(1−p̂)
n

For large sample we are using normal approximation

Confidence interval is then of the form p̂ ± z1−α
2
sp
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Selecting the sample

When selecting the sample th following should be taken into account

precision of estimates needed - sample size
cost of selecting the sample with a given size
sampling method - sample frame
representativness of the sample
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Determing the sample size fo estimating means

In order to determine the sample size we have to specify

precision d
confidence level α

We also need some preliminary estimate of the standard error sx

Usually we obtain such an estimate from pilot survey - small survey
done before the main survey

The sample size can then be determined as follows

d = z1−α
2

sx√
n

So

n =

(
z1−α

2

d

)2

Notice: the higher is the needed precision and confidence level the
begger sample we need
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Determing the sample size for estimating proportions

In the case of estimating proportions we also have to specify d and α

We should have the preliminary estimate of p

This estimate is usually formulated on the basis of pilot survey

Making use of the formula derived before and the formula for varinace
in this case we obtain

n =

(
z1−α

2

d

)2

p̂ (1 − p̂)

Jerzy Mycielski (CMT) Quantitative Methods of Decision Making 2008 121 / 146



. . . . . .

Statistical inference – hypothesis testing
General considerations

In many real problems we have to make a decision on the basis of
information from the sample

Usually this decision is based on some feature of the sample

The statement of the feature in question is called null hypothesis and
denoted as H0

.
Example
..

.

. ..

.

.

A drug can only be accepted if it can be shown that it is effective in curing
some disease. So it producer of the drug is required by law to demonstrate
that by the ill people given the drug significantly improved in comparison
to control group of ill people who were not given the drug. The null
hypothesis in this case can be formulated as follows: there is no difference
between the state of health of the people who were given the drug and the
ones who were not given it. The task of the drug company is to show that
the null hypothesis is false!
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Statistical inference – hypothesis testing
Formulating the null hypothesis

When deriving the sampling distribution of statistics we assume that
null hypothesis is true

Apart from null hypothesis we also define the alternative hypothesis

.
Example
..

.

. ..

.

.

Denote the productivity in factories A,B as µA and µB . Manager is
checking whether factory A is more productive that factory B. He is
formulating his null hypothesis as H0 : µA = µB and his alternative as
H1 : µA > µB
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Statistical inference – hypothesis testing
Type I and Type II errors

When testing the hypothesis and making decision we can make two
errors: type I error and type II error.

Probability of type I error is called significance level or size of the test

significance level is usually denoted as α

we say that H0 can be rejected at high significance level if it can be
rejected for very small α

We control the probability of type I error by setting the significance
level

We cannot control the probability of type II error (power of the test)

Decision H0 true H1 true H0 true OK type I error H1 true type II error OK
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Statistical inference – hypothesis testing
Choosing significance level

When choosing the significance level we have to take into account
that the higher is the significance level (the smaller the type I error),
the higher is probability of type II error.

Conventional significance levels used in statistics are 0.1%, 1%, 5%,
10%

But this are only conventions!

Choosing the significance level for a test on which the decision is
based you should take into account the payoffs table - loses related to
type I, type II erors and and gains associated with correct decisions.
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Statistical inference – hypothesis testing
Acceptance and rejection regions and p–values

Assume that statistics Z used for testing have sampling distributions
under H0 is known

Decision rule traditionally was that H0 is rejected if statistics Z > z

z is called critical value

Consider the probability that statistics Z is larger than some value z
if H0 is true (probability of type I error)

This probability is equal to Pr(Z > z) = 1 − Pr(z < z) = 1 − F (z)
where F (z) is the cdf of sampling distribution of the test statistics

For a significance level exogenously given, critical value can be
calculate as 1 − F (z) = 1 − α and then z = F−1(α)

A more modern approach is to calculate F (z) (which is called
p-value) and to compare it with α.

The decision rule which is equivalent to the previous one is the
following: reject H0 if p-value is (smaller) that the assumed
significance level α
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Statistical inference – hypothesis testing
One-tailed and two-tailed tests

In the case of testing H0 : µ0 there are three possible versions of
alternative hypothesis:

H1 : µ = 0
H1 : µ > 0
H1 : µ < 0

The first version of the H1 results in two sided test

The second two versions of H1 results in one sided test.

The choice depends on research question or decision context
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Testing hypothesis about the mean – unknown population
variance

We use the sample mean in order to verify a hypothesis about the
mean in population

The simplest case H0 : µ = µ∗, H1 : µ 6= µ∗

If σ2 is not known and x is normally distributedthan test statistic is:

t =
x − µ∗

sx/
√

n

and t has t-student distribution with N − 1 degrees of freedom

If σ2 is unknown, and x is not normally distributed but sample is large
than test statistic is:

z =
x − µ∗

sx/
√

n

and have approximately standard normal distribution
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Testing hypothesis about the mean – unknown population
variance

If σ2
1, σ2

2 unknown and x1, x2 are normally distributed:

t =
x1 − x2

sp

√
1
n1

+ 1
n2

s2
p =

(n1−1)s2
1+(n2−1)s2

1
n1+n2−2 , and t has t-student distribution with

n1 + n2 − 2 degrees of freedom

If σ2
1, σ2

2 unknown unknown, and x1, x2 are not normally distributed
but sample is large than test statistic is:

z =
x1 − x2√

s2
1

n1
+ s2

x
n2

and have approximately standard normal distribution
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Testing hypothesis about the population proportion

Null hypothesis H0 : p = p∗, H1 : p 6= p∗

The null hupothesis can also be of the form H1 : p < p∗, H1 : p > p∗

Statistics

z =
p̂ − p∗√

p̂(1−p̂)
n

If sample is large, the test statistics is approximately normally
distributed
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Relation between hypothesis testing and interval estimation

Hypothesis testing and interval estimation have much in common

In the case of interval estimation you construct an interval which
covers the population parameter with given probability.

In the case of hypothesis testing we assume the value of the
parameter and check wheter our estimate is in the acceptance region.
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Analysis of variance
Total sum of squares

Total variation in the sample:

SST =
k∑

j=1

nj∑
i=1

(
xij − x

)2

x is the overall for all observations in all subgroups

x =

∑k
j=1

∑nj

i=1 xij

n
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Analysis of variance
Error sum of squares

Variation which cannot be explained with the differences among
means across subgroup

This varion is also called within variation:

SSE =
k∑

j=1

nj∑
i=1

(xij − x j)
2

x j is the mean for subgroup j

x j =

∑nj

i=1 xij

nj
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Analysis of variance
Among treatments sum of squares

Variation which can be explained with the differencess among means
across subgroup

This sum of

This varion is also called between variation:

SSA =
k∑

j=1

nj

(
x j − x

)2
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Analysis of variance
ANOVA table

SS DF MS F

Between SSA k − 1 SSA
k−1

MSA
MSE

Within SSE n − k SSE
n−k

Total SST n − 1 SST
n−1
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One-way analysis of variance

The null hyphothesis

H0 : µ1 = µ2 = . . . = µk

Alternative hypothesis: not all the subgroup means are the same

H0 rejected if F = MSA
MSE larger than critical value from F distribution

with k and n − k − 1 degrees of fredom
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Example: predicting the price of apartment
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Distribution of two or more random variables
Sample covariance and correlation coefficients

Sample covariance of variables X and Y defined as

sxy =

∑n
i=1 (xi − x) (yi − y)

n − 1

Sample correlation coefficient is defined as

ρ̂xy =
sxy
sxsy
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Distribution of two or more random variables
Covariance and correlation coefficients, properties and interpretations

Covariance and correlation coefficient are measures of dependence
between variables

Correlation coefficient is always between −1 and 1

If sample covariance or correlation coefficient is positive it means that
we tend to observe that observations for X and Y tends to deviate in
the same direction from the mean.

In the case of negative correlation the variables tend to deviate from
the mean in opposite directions

If the correlation coefficient is positive we say that variables are
positively correlated, if it is negative we say that they are negatively
correlated
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Distribution of two or more random variables
Covariance and correlation coefficients

.
Definition (Covariance)
..

.

. ..

.

.

Cov (X , Y ) = E {[X − E (X )] [Y − E (Y )]}

.
Definition (Correlation coefficient)
..

.

. ..

.

.

ρxy =
Cov (X , Y )√

Var (X ) Var (Y )

The above formulas are defining the population variance and
population correlation coefficient

The interpretation and properties are similar to the sample analogues
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Distribution of two or more random variables
Covariance and correlation coefficients, special cases

Special cases:

if ρxy = 1 then X = Y , perfect positive correlation
if ρxy = 0 variables are not correlated
if ρxy = 1 then X = Y , perfect negative correlation

But: independence implies the lack of correlation but the lack of
correlation does not imply independence

Independence is a stronger property
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Regression and correlation analysis

Explained variable is the variable which is to be explained by the
model

Explanatory variable is the variable is which is explaining the behavior
of the expained variable

Regression is the dependence of the expected value of the explained
variable on explanatory variable

In simple regression the dependence between the explained variable y
and explanatory variable x is of the linear form

yi = α + βxi + ε

ε is the error term or unexplaned devations of yi from the regression
line

Estimators of population parameters α and β are choosen in such a
way to minimize devations of observations from the estimated
regression line.
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. . . . . .

Simple linear regression analysis

The estimators of unknown population parameters α and β of simple
regression can be shown to be equal to

estimator of β

a =
sxy
sx

estimator of α

b = y − b1x
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. . . . . .

Using the sample regression equation
Predicting Y for given X

Using estimates of α and β we can formulate the prediction of yi

given our simple model of dependence

Prediction is given by
ŷ = a + bx

Prediction of yi can be formulated for observations in the sample or
out of the sample
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. . . . . .

Coefficient of determinantion R2 is defined as

R2 =

∑n
i=1 (ŷi − y)2∑n
i=1 (yi − y)2

Important property of R2:

0 ≤ R2 ≤ 1

It can be intepreted as the percent of total variation of explained
variable which is explained by explanatory variable x

For simple linear regresion it can be shown that

R2 =
s2
xy

s2
x s2

y

= ρ̂2
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. . . . . .

Significance tests for explanatory variable

The hypotesis which is most frequently test in the context of linear
regression is the hypotesis H0 : β = 0

This hypothesis can be intepreted as the hypothesis of the lack of the
dependence between y and x

The test statistics used for testing H0 in simple is the following:

t =
s y |x∑n

i=1 (xi − x)2

where

s y |x =

∑n
i=1 (yi − ŷi )

2

n − 2

Sometimes it is easier to use the formula:

t =

√
(n − 2) R2

1 − R2

It has the t-Student distribution with n − 2 degrees of freedom

Jerzy Mycielski (CMT) Quantitative Methods of Decision Making 2008 146 / 146


	Quantitative Methods of Decision Making
	Introduction
	Using statistical techniques in business
	Population and sample
	Random sample
	Relationship between probability and statistics
	Data sources

	Descriptive statistics
	Constructing statistical tables and graphs
	Constructing statistical graphs
	Measures of central tendency
	Dispersion
	Measures of dispersion

	Descriptive measures for grouped data
	Economic data and business forecasting
	Gross domestic product
	Price indexes
	Time series

	Properties of probability
	Interpretations of probability
	Sets
	Fundamental properties (axioms) of probability
	Complementary events
	Probability of union
	Independent events
	Conditional probability

	Random variable
	Expectation
	Variance
	Expectation of the sum of random variables
	Variance of the sum of independent random variables
	Probability distribution of discrete random variables
	Cumulative distribution function
	Probability distribution of continuous random variables
	Normal distribution and related distributions

	Decision theory
	Decision tree
	Objective variables
	Payoff table
	Expected payoff
	Utility and risk

	Sampling distributions
	Distribution of the sample mean
	Law of large numbers
	The central limit theorem
	The meaning of “Large sample”
	Distribution of the sample proportion

	Statistical inference - estimation
	Estimator
	Properties of good estimator
	Confidence intervals

	Selecting the sample
	Determing the sample size
	Determing the sample size for estimating proportions

	Statistical inference -- hypothesis testing
	General considerations
	Testing hypothesis about the mean -- known and unknown population variance
	Testing hypothesis about the difference of means -- known and unknown population variances
	Testing hypothesis about the population proportions
	Relation between hypothesis testing and interval estimation

	Analysis of variance and chi-square tests
	Analysis of variance
	Error sum of squares
	One-way analysis of variance

	Regression and correlation analysis
	Simple linear regression analysis
	Using the sample regression equation
	Significance tests for explanatory variable



