Sample selection

- In many economic problems sample we use for estimation is a nonrandomly selected sample
- We will analyze three selection mechanisms
- selection based on selection indicator
- selection based on response variable
- selection based on separate selection model (incidental truncation)
- It is always important to correctly define the population in question

Example 1. (Wooldridge) Saving function

$$
\text { saving }=\beta_{0}+\beta_{1} \text { income }+\beta_{2} \text { age }+\beta_{3} \text { married }+\beta_{4} \text { kids }+u
$$

but we only observe households for which age> 45
Example 2. (Wooldridge) Estimate effect of eligibility in a pension plan on wealth.

$$
\text { wealth }=\beta_{0}+\beta_{1} \text { plan }+\beta_{2} \text { educ }+\beta_{3} \text { age }+\beta_{4} \text { income }+u
$$

but we only have observations for people with wealth $<\$ 200,000$.
Example 3. (Wooldridge) Wage offer function. By definition it should represent the (potential) wages of all people - not only the ones who are working. We only have data on wages for people who are actually working the selection is based on another variable, labor force participation.

Ignorability of selection

- Define selection indicator s ($s=1$ if observation is in the sample)
- Selection problem can be ignored if in model

$$
\begin{gathered}
y=\beta_{1}+\beta_{2} x_{2}+\ldots+\beta_{K} x_{K}+\varepsilon \\
\mathrm{E}(u \mid \boldsymbol{z}, s)=0
\end{gathered}
$$

where z is the vector of instruments. The consistent estimate of β can be obtained with standard $2 S L S$.

- Interpretation: selection can be ignored if it is possible to find instruments z such that given z selection is not correlated with random term u.
- If selection is independent on \boldsymbol{z}, u or based on deterministic function of $s=f(\boldsymbol{z})$ then if $\mathrm{E}(u \mid \boldsymbol{z})=0$ then $\mathrm{E}(u \mid \boldsymbol{z}, s)=\mathrm{E}(u \mid \boldsymbol{z})=0$
- The simplest case: $\boldsymbol{z = x}$ (Classical Regression) and selection based on x. In this case we can use $O L S$ (Saving function example)

Selection based on response variable

- Hausman and Wise study (1977) - determinants of earnings, sample only for the people participating in negative income experiment, no data available for the people with income higher than same treshold
- Wealth example: we only observe the people whose wealth is smaller than $\$ 200,000$.

Example 4. Gross wages in Poland, sample based on firm survey. .

Only wages higher than minimal wage are declared!

- Difference with top coding - in the case of top coding we do not observe the response variable but we observe explanatory variable (see top coding for wealth example)
- In the case of sample selection (or truncated sample) - we observe nothing about the units not selected to the sample
- Assume that observation is selected to the sample if $s_{i}=1$ and

$$
s_{i}=1\left[a_{1}<y_{i}<a_{2}\right]
$$

- $c d f$ of observed y_{i} is given by

$$
\operatorname{Pr}\left(y_{i} \leq Y \mid \boldsymbol{x}_{i}, s_{i}=1\right)=\frac{\operatorname{Pr}\left(y_{i} \leq Y, s_{i}=1 \mid \boldsymbol{x}_{i}\right)}{\operatorname{Pr}\left(s_{i}=1 \mid \boldsymbol{x}_{i}\right)}
$$

where

- But $\operatorname{Pr}\left(s_{i}=1 \mid \boldsymbol{x}_{i}\right)=\operatorname{Pr}\left(a_{1}<y_{i}<a_{2}\right)=F\left(a_{2} \mid \boldsymbol{x}_{i} ; \boldsymbol{\beta}, \boldsymbol{\gamma}\right)-F\left(a_{1} \mid \boldsymbol{x}_{i} ; \boldsymbol{\beta}, \boldsymbol{\gamma}\right)$
- $\operatorname{Pr}\left(y_{i} \leq Y, s_{i}=1 \mid \boldsymbol{x}_{i}\right)=\operatorname{Pr}\left(a_{1}<y_{i} \leq Y \mid \boldsymbol{x}_{i}\right) \quad=\quad F\left(Y \mid \boldsymbol{x}_{i} ; \boldsymbol{\beta}, \boldsymbol{\gamma}\right)-$ $F\left(a_{1} \mid \boldsymbol{x}_{i} ; \boldsymbol{\beta}, \gamma\right)$
- Density function is then

$$
\frac{\partial \operatorname{Pr}\left(y_{i} \leq Y \mid \boldsymbol{x}_{i}, s_{i}=1\right)}{\partial Y}=\frac{f\left(Y \mid \boldsymbol{x}_{i} ; \boldsymbol{\beta}, \boldsymbol{\gamma}\right)}{F\left(a_{2} \mid \boldsymbol{x}_{i} ; \boldsymbol{\beta}, \boldsymbol{\gamma}\right)-F\left(a_{1} \mid \boldsymbol{x}_{i} ; \boldsymbol{\beta}, \boldsymbol{\gamma}\right)}
$$

- If we assume that the distribution $F(\cdot)$ is normal distribution we will obtain the truncated tobit (called too truncated normal regression)

Incidental truncation

- In this case we have problem of self-selection of the units in the sample
- Selection is based on decision of the unit partially based on unobserved characteristics

Example 5. (Wooldridge) Labor force participation and the wage offer. We are interested in $\mathrm{E}\left(w_{i}^{o} \mid \boldsymbol{x}_{i}\right)$ and collect the sample for the people in working age. But only for the people actually working we obtain data on wage offer w_{i}^{o}. The utility maximization problem for individual is as follows:

$$
\max u t i l(q, h) \text { s.t. } 0 \leq h \leq 168
$$

where h_{i} are the hours worked and $q_{i}=w_{i}^{o} h_{i}+a_{i}$ is income and a_{i} is nonlabor income. We assume that marginal utility w.r.t income is positive and with
respect to hours worked negative. Marginal utility of work is given by

$$
\begin{aligned}
\frac{\partial u t i l\left(q, h_{i}\right)}{\partial h_{i}} & =\frac{\partial u t i l\left(q_{i}, h_{i}\right)}{\partial q_{i}} \frac{\partial q_{i}}{\partial h_{i}}+\frac{\partial u t i l\left(q, h_{i}\right)}{\partial h_{i}} \\
& =\frac{\partial u t i l\left(q_{i}, h_{i}\right)}{\partial q_{i}} w_{i}^{o}+\frac{\partial u t i l\left(q, h_{i}\right)}{\partial h_{i}}
\end{aligned}
$$

First order condition is given by equality

$$
\frac{\partial u t i l\left(q, h_{i}\right)}{\partial h_{i}}=0
$$

Individual will only work $\left(h_{i}>0\right)$ if for $h_{i}=0$ his/her marginal utility of work is positive:

$$
\frac{\partial u t i l\left(a_{i}, 0\right)}{\partial q_{i}} w_{i}^{o}+\frac{\partial u t i l\left(a_{i}, 0\right)}{\partial h_{i}} \geq 0
$$

and so

$$
w_{i}^{o} \geq-\frac{\partial u t i l\left(a_{i}, 0\right)}{\partial h_{i}} / \frac{\partial u t i l\left(a_{i}, 0\right)}{\partial q_{i}}=w_{i}^{r}
$$

where w_{i}^{r} is called reservation wage.
If wage offer is given by $w_{i}^{o}=\exp \left(\boldsymbol{x}_{i 1} \boldsymbol{\beta}+u_{i 1}\right)$ and reservation wage by $w_{i}^{r}=\exp \left(\boldsymbol{x}_{i 2} \boldsymbol{\beta}+u_{i 2}\right)$ then we have the following two equations in the model:

1. wage equation

$$
\log w_{i}^{o}=\boldsymbol{x}_{i 1} \boldsymbol{\beta}+u_{i 1}
$$

2. participation equation

$$
\log w_{i}^{o}-\log w_{i}^{r}=\boldsymbol{x}_{i 1} \boldsymbol{\beta}+u_{i 1}-\boldsymbol{x}_{i 2} \boldsymbol{\beta}-u_{i 2}=\boldsymbol{x}_{i} \boldsymbol{\delta}_{2}+v_{i 2}
$$

If individual is participating $\left(\log w_{i}^{o}-\log w_{i}^{r}>0\right)$ we observe w_{i}^{o}. We do not observe w_{i}^{r} but only \boldsymbol{x}_{i} and the decision to participate or not.

Remarks:

- as $\boldsymbol{x}_{i}=\left(\boldsymbol{x}_{i 1}, \boldsymbol{x}_{i 2}\right)$ all the variables included in wage equation should also be included in participation equation
- as $v_{i 2}=u_{i 1}-u_{i 2}$ we expect positive correlation between $u_{i 1}$ and $v_{i 2}$
- Difference between the incidental truncation and top coding: we do not know the $\log w_{i}^{r}$, so we do not know exactly when the data is censored.
- $\log w_{i}^{o}-\log w_{i}^{r}=\boldsymbol{x}_{i} \boldsymbol{\delta}_{2}+v_{i 2}$ is a reduced form equation (wage is not included in this equation), the parameters of this equation can not be interpreted as parameters of the labor supply function.
- The basic model

$$
\begin{aligned}
& y_{1}=x_{1} \beta_{1}+u_{1} \\
& y_{2}=1\left[\boldsymbol{x} \boldsymbol{\delta}_{2}+v_{2}>0\right]
\end{aligned}
$$

- This model is called Heckit or Tobit type II model
- Assumptions
- $\left(\boldsymbol{x}, y_{2}\right)$ are always observed, y_{1} is only observed when $y_{2}=1$
- $\left(u_{1}, v_{2}\right)$ have zero mean and are independent of \boldsymbol{x}
- $v_{2} \sim \operatorname{Normal}(0,1)$
- $\mathrm{E}\left(u_{1} \mid v_{2}\right)=\gamma_{1} v_{2}$ (which is true e.g. if u_{1}, v_{2} are bivariate normal - in this case $\gamma_{1}>0$ if u_{1} and v_{2} are positively correlated)
- The conditional expected value of y_{1} given v_{2} is equal to

$$
\mathrm{E}\left(y_{1} \mid \boldsymbol{x}, v_{2}\right)=\boldsymbol{x}_{1} \boldsymbol{\beta}_{1}+\mathrm{E}\left(u_{1} \mid v_{2}\right)=\boldsymbol{x}_{1} \boldsymbol{\beta}_{1}+\gamma_{1} v_{2}
$$

- If u_{1} and v_{2} are not correlated $\left(\mathrm{E}\left(u_{1} \mid v_{2}\right)=0\right.$ and $\left.\gamma_{1}=0\right)$ then $\mathrm{E}\left(y_{1} \mid \boldsymbol{x}, v_{2}\right)=\boldsymbol{x}_{1} \boldsymbol{\beta}_{1}$ and as y_{2} is a function of $v_{2}, \mathrm{E}\left(y_{1} \mid \boldsymbol{x}, y_{2}\right)=$ $\mathrm{E}\left(y_{1} \mid \boldsymbol{x}, v_{2}\right)=\boldsymbol{x}_{1} \boldsymbol{\beta}_{1}$. In this case $\boldsymbol{\beta}$ can be consistently estimated with $O L S$ (no sample selection bias - expected value of y_{1} does not depend on unit being selected or not)
- However, if $\gamma_{1} \neq 0$ then

$$
\mathrm{E}\left(y_{1} \mid \boldsymbol{x}, y_{2}\right)=\boldsymbol{x}_{1} \boldsymbol{\beta}_{1}+\mathrm{E}\left(u_{1} \mid \boldsymbol{x}, y_{2}\right)=\boldsymbol{x}_{1} \boldsymbol{\beta}_{1}+\gamma_{1} h\left(\boldsymbol{x}, y_{2}\right)
$$

where $h\left(\boldsymbol{x}, y_{2}\right)=\mathrm{E}\left(u_{1} \mid \boldsymbol{x}, y_{2}\right)$.

- $h(\boldsymbol{x}, 1)=\mathrm{E}\left(u_{1} \mid v_{2}>-\boldsymbol{x} \boldsymbol{\delta}_{2}\right)=\lambda\left(\boldsymbol{x} \boldsymbol{\delta}_{2}\right)$ where $\lambda(\cdot)=\frac{\phi(\cdot)}{\Phi(\cdot)}$ is inverse mils ratio
- As we only observe y_{1} for $y_{2}=1$ we are interested in conditional expectation of y_{1} given that individual was selected:

$$
\begin{aligned}
\mathrm{E}\left(y_{1} \mid \boldsymbol{x}, y_{2}=1\right) & =\boldsymbol{x}_{1} \boldsymbol{\beta}_{1}+\gamma_{1} h(\boldsymbol{x}, 1) \\
& =\boldsymbol{x}_{1} \boldsymbol{\beta}_{1}+\gamma_{1} \lambda\left(\boldsymbol{x} \boldsymbol{\delta}_{2}\right)
\end{aligned}
$$

- Using that formula we can analyze the selection bias problem as omitted variable problem. Making $O L S$ regression of y_{1} on x_{1} for selected units we omit $\lambda\left(\boldsymbol{x} \boldsymbol{\delta}_{2}\right)$ which is correlated with \boldsymbol{x}_{1}, which cause the omitted variable bias.
- This equation also suggest how to estimate consistently $\boldsymbol{\beta}_{1}$ with $O L S$: we should add to the explanatory variables element $\lambda\left(\boldsymbol{x} \boldsymbol{\delta}_{2}\right)$.
- $\boldsymbol{\delta}_{2}$ is unknown but it can be consistently estimated with probit.
- Two stage Heckman procedure

1. Estimate probit regression of $y_{i 2}$ on \boldsymbol{x}_{i}. Calculate $\widehat{\lambda}_{i 2}=\lambda\left(\boldsymbol{x} \widehat{\boldsymbol{\delta}}_{2}\right)$
2. Regress $y_{i 1}$ on $x_{i 1}$ and $\widehat{\lambda}_{i 2}$

- Test of the existence of the selection bias $\left(H_{0}: \gamma_{1}=0\right)$ can be based on standard t-statistics
- If $\gamma_{1} \neq 0$, the variance matrix should be adjusted to take into account that $\widehat{\boldsymbol{\delta}}_{2}$ is estimated
- Even if $\boldsymbol{x}=\boldsymbol{x}_{1}$ this model is identified. However in this case identification relies on nonlinearity of $\lambda(\cdot)$. As $\lambda(\cdot)$ may be often well approximated with linear function of x_{1}, in such situation we have severe collinearity
problem. Then in order to have precise estimate of $\boldsymbol{\beta}_{1}$ we should have some explanatory variables which belongs to \boldsymbol{x} but does not belong to \boldsymbol{x}_{1}

Example 6. (Wooldridge) Wage offer equation for married women. For 753 women in the sample, 428 are working. The labor force participation equation contains variables in wage equation plus income, age, number of young children, number of older children. Results

	OLS	Heckit
educ	.108	.109
	$(.014)$	$(.016)$
exper	.042	.044
	$(.012)$	$(.016)$
exper 2	-.00081	-.00086
	$(.00039)$	$(.00044)$
constant	-.522	-.578
	$(.199)$	$(.307)$
$\widehat{\lambda}_{2}$	-	.032
Sample size	428	$(.134)$
R-squared	.157	428
		.157

Differences in estimates in this case are not great, inverse Mills ratio is not significant - no evidence for sample selection bias problem. If we estimate this heckit without exclusion restrictions the estimates become very imprecise
(e.g. se for educ becomes .119)

- Heckit model can also be estimated with $M L$. This procedure is efficient if u_{1} and v_{2} are bivariate normal.
- Sometimes we do not only observe the decision to participate but also y_{2} (e.g. number of hours worked)
- In this case the selection equation has the form of the tobit

$$
\begin{aligned}
y_{1} & =\boldsymbol{x}_{1} \boldsymbol{\beta}_{1}+u_{1} \\
y_{2} & =\max \left[0, \boldsymbol{x} \boldsymbol{\delta}_{2}+v_{2}\right]
\end{aligned}
$$

- This model is called type III tobit model
- Similarly as in heckit model

$$
\mathrm{E}\left(y_{1} \mid \boldsymbol{x}, v_{2}, y_{2}>0\right)=\boldsymbol{x}_{1} \boldsymbol{\beta}+\gamma_{1} v_{2}
$$

- But in this case v_{2} can be consistently estimated as residuals from tobit model.
- Two step procedure:

1. estimate tobit regression of $y_{i 2}$ on \boldsymbol{x}_{i}. Calculate $\widehat{v}_{i 2}=y_{i 2}-\boldsymbol{x} \widehat{\boldsymbol{\delta}}_{2}$
2. estimate $O L S$ regression of y_{1} on \boldsymbol{x}_{1} and $\widehat{v}_{i 2}$
