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Moment estimators

We often assume that elements of the sample are identically
distributed that is they are draws from common distribution F
In econometric theory we refer to the underlying common
distribution F as the population or Data Generating Prosess
(DGP)
The simplest estimators are based on moments that is by
replacing population moments by sample moments
E.g. expected value µ = and variance σ2 of Y can be
estimated as follows:

µ̂ =
∑n

i=1 Yi
n , σ̂2 = 1

n

n∑
i=1

Y 2
i −

[
1
n

n∑
i=1

Yi

]2

=
∑n

i=1 (Yi − µ̂)2

n

as var (Y ) = E
(
Y 2)− [E (Y )]2
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Linear CEF estimation (OLS estimator)
Replacing the variance of CEF error with sample variance:

Ŝ(β) = 1
n

n∑
i=1

(
Yi − X ′

i β
)2

= 1
nSSE (β)

where SSE (β) is called the sum of squared errors function.
We define the least squares estimator β̂ as the minimizer of
Ŝ(β)

β̂ = argminβ∈Rk Ŝ (β)
First order conditions
∂SSE (β)

∂β
= −2

n∑
i=1

XiYi +2
n∑

i=1
XiX

′
i β = −2X′Y+2X′Xβ = 0

Least Squares Estimator is the solution of f.o.c.

β̂ =
(
X′X

)−1 X′Y
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Sum of Squared Error, one regressor
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(a) Deviation from Fitted Line
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Figure 3.1: Regression With One Regressor

Source: Hansen (2022)
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Sum of Squared Error, two regressors
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(b) Sum of Squared Error Function
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Figure 3.2: Regression with Two Variables

Source: Hansen (2022)
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Linear CEF estimation (OLS estimator)
Alternative derivation of OLS estimator is based on replacing
QXX = E (XX ′) and QXY = E (XY ) by Q̂XX = 1

n
∑n

i=1 XiX
′
i

and Q̂XY = 1
n
∑n

i=1 XiYi so that

β̂ = Q̂−1
XX Q̂XY

If matrix XX ′ is invertible β̂ unique. If XX ′ is not invertible
we have multicollinearity problem.
Notice that in this case XX ′ is positive definite and second
order conditions for minimization of SSE (β) are satisfied

∂SSE
(
β̂
)

∂β
= 2X′X > 0

where Ŷi = X ′
i β̂ is fitted value of Yi from regression,

êi = Yi − Ŷi is residual from regression
Estimator of the error variance

σ̂2 = 1
n

n∑
i=1

ê2
i
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Analysis of variance, R2

It can be proven that
n∑

i=1

(
Yi − Y

)2
=

n∑
i=1

(
Ŷi − Y

)2
+

n∑
i=1

e2
i

Coefficient of determination (R-squared)

R2 =
∑n

i=1

(
Ŷi − Y

)2

∑n
i=1

(
Yi − Y

)2

Can be interpreted as the fraction of the sample variance of Y
which is explained by the least squares fit.
R2 cannot be use used for comparing models as it always
increases if variables are added to the model
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Linear Regression Model

The variables (Y , X ) satisfy the linear regression equation

Y = Xβ + e.

E [e| X ] = 0

Variables have finite second moments E
[
Y 2] < ∞,

E ∥X∥2 < ∞ and an invertible design matrix
QXX = E [XX ′] > 0.

In addition above assumptions the homoskedasticity
assumption is often made

E
(

e2
∣∣∣X) = σ2 (X ) = σ2

An estimator θ̂ for θ is unbiased if E
[
θ̂
]

= θ

OLS estimator β̂ is unbiased if Linear Regression model is valid
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Variance estimation
Denote D = diag

(
σ2

1, ..., σ2
n
)

In the heteroscedastic linear regression model with i.i.d.
sampling:

V
β̂

= var
(

β̂
∣∣∣X) =

(
X′X

)−1 (X′DX
) (

X′X
)−1

.

If in addition the error is homoskedastic V
β̂

= σ2 (X′X)−1.
Unbiased estimator of σ2

s2 =
∑n

i=1 ê2
i

n − k
Unbiased estimator of V

β̂
for homoscedastic case

V0
β̂

= s2 (X′X
)−1

Heteroskedasticity robust estimator of V
β̂

V HC1
β̂

= n
n − k

(
X′X

)−1
( n∑

i=1
XiX

′
i ê2

i

)(
X′X

)−1
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Efficiency of the OLS estimator
Theorem
Gauss-Markov. In the homoscedastic linear regression model with
i.i.d. sampling, if E

(
β̃
∣∣∣X) = β then var

(
β̃
∣∣∣X) ≥ σ2 (XX ′)−1 .

OLS estimator is efficient!
Assume either autocorrelation or heteroskedasticity is present.
Then var [e| X ] = Ω.
In such a case we can use GLS estimator:

β̂gls =
(
X′Ω−1X

)−1
X′Ω−1Y.

If var [e| X ] ̸= σ2I then the GLS is efficient (not OLS).
Modern practice is to use unefficient OLS estimator with
heteroscedasticity robust variance matrix.
However, care must be taken if sparse dummy are present in
our data
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Clustered samples

Clustered sample model:

Yig = X ′
igβ + eig for g = 1, . . . , G ; i = 1, . . . , ng

Yg = Xgβ + eg for g = 1, . . . , G

where eg =
(
e1g , ..., eng g)

)
, g is the index of cluster, i is the

index of observation inside the cluster

β̂ =

 G∑
g=1

X′
gXg

−1 G∑
g=1

X′
gYg

 =
(
X′X

)−1 X′Y

We assume that erros for different clusters (eg) and (eh) are
independent, but observations inside cluster can be dependent
var (eg) = Ω.
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Clustered samples
In the case of clustered samples we use clustered version of
the variance estimator:

V̂β = an
(
X′X

)−1

 G∑
g=1

X′
gege′

gXg

(X′X
)−1

an =
(n − 1

n − k

)( G
G − 1

)
The clustered estimate of the variance matrix is often very
different from the standard unclustered version
The number of clusters should be treated as being the number
of observations
It is very important to identify the correct level of clustering

if the clusters are too fine the variance matrix estimate has
potentially large bias
if clusters are too large the estimated standard errors are very
large
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Clustered samples

Duflo, Dupas and Kremer (2011) investigate the impact of
tracking (assigning students based on initial test score)
Clusters on the school level G = 111
Estimate from the model

TestScoreig = −0.071
(0.019)
[0.054]

+ 0.138
(0.026)
0.078]

Trackingg + eig .
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