Advanced Econometrics

 University of WarsawJerzy Mycielski

Doctoral School of Social Sciences, 2024

- We often assume that elements of the sample are identically distributed that is they are draws from common distribution F
- In econometric theory we refer to the underlying common distribution F as the population or Data Generating Prosess (DGP)
- The simplest estimators are based on moments that is by replacing population moments by sample moments
- E.g. expected value $\mu=$ and variance σ^{2} of Y can be estimated as follows:
$\hat{\mu}=\frac{\sum_{i=1}^{n} Y_{i}}{n}, \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}-\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right]^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{\mu}\right)^{2}}{n}$
as $\operatorname{var}(Y)=\mathbb{E}\left(Y^{2}\right)-[\mathbb{E}(Y)]^{2}$

Linear CEF estimation (OLS estimator)

- Replacing the variance of CEF error with sample variance:

$$
\widehat{S}(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\prime} \beta\right)^{2}=\frac{1}{n} S S E(\beta)
$$

where $\operatorname{SSE}(\beta)$ is called the sum of squared errors function.

- We define the least squares estimator $\hat{\beta}$ as the minimizer of $\widehat{S}(\beta)$

$$
\widehat{\beta}=\operatorname{argmin}_{\beta \in R^{k}} \widehat{S}(\beta)
$$

- First order conditions

$$
\frac{\partial S S E(\beta)}{\partial \beta}=-2 \sum_{i=1}^{n} X_{i} Y_{i}+2 \sum_{i=1}^{n} X_{i} X_{i}^{\prime} \beta=-2 \mathbf{X}^{\prime} \mathbf{Y}+2 \mathbf{X}^{\prime} \mathbf{X} \beta=0
$$

- Least Squares Estimator is the solution of f.o.c.

$$
\widehat{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

Figure 3.1: Regression With One Regressor
Source: Hansen (2022)

Sum of Squared Error, two regressors

Figure 3.2: Regression with Two Variables
Source: Hansen (2022)

Linear CEF estimation (OLS estimator)

- Alternative derivation of OLS estimator is based on replacing $\mathbf{Q}_{X X}=\mathbb{E}\left(X X^{\prime}\right)$ and $\mathbf{Q}_{X Y}=\mathbb{E}(X Y)$ by $\widehat{\mathbf{Q}}_{X X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\prime}$ and $\widehat{\mathbf{Q}}_{X Y}=\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}$ so that

$$
\widehat{\beta}=\widehat{\mathbf{Q}}_{X X}^{-1} \widehat{\mathbf{Q}}_{X Y}
$$

- If matrix $X X^{\prime}$ is invertible $\widehat{\beta}$ unique. If $X X^{\prime}$ is not invertible we have multicollinearity problem.
- Notice that in this case $X X^{\prime}$ is positive definite and second order conditions for minimization of $\operatorname{SSE}(\beta)$ are satisfied

$$
\frac{\partial S S E(\widehat{\beta})}{\partial \beta}=2 \mathbf{X}^{\prime} \mathbf{X}>0
$$

where $\widehat{Y}_{i}=X_{i}^{\prime} \widehat{\beta}$ is fitted value of Y_{i} from regression, $\widehat{e}_{i}=Y_{i}-\widehat{Y}_{i}$ is residual from regression

- Estimator of the error variance

$$
\widehat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} \widehat{e}_{i}^{2}
$$

- It can be proven that

$$
\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}+\sum_{i=1}^{n} e_{i}^{2}
$$

- Coefficient of determination (R-squared)

$$
R^{2}=\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}
$$

- Can be interpreted as the fraction of the sample variance of Y which is explained by the least squares fit.
- R^{2} cannot be use used for comparing models as it always increases if variables are added to the model

Linear Regression Model

- The variables (Y, X) satisfy the linear regression equation

$$
\begin{aligned}
& Y=X \beta+e \\
& \mathbb{E}[e \mid X]=0
\end{aligned}
$$

- Variables have finite second moments $\mathbb{E}\left[Y^{2}\right]<\infty$, $\mathbb{E}\|X\|^{2}<\infty$ and an invertible design matrix $Q_{X X}=\mathbb{E}\left[X X^{\prime}\right]>0$.
- In addition above assumptions the homoskedasticity assumption is often made

$$
\mathbb{E}\left(e^{2} \mid X\right)=\sigma^{2}(X)=\sigma^{2}
$$

- An estimator $\hat{\theta}$ for θ is unbiased if $\mathbb{E}[\hat{\theta}]=\theta$
- OLS estimator $\widehat{\beta}$ is unbiased if Linear Regression model is valid
- Denote $\mathbf{D}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)$
- In the heteroscedastic linear regression model with i.i.d. sampling:

$$
V_{\widehat{\beta}}=\operatorname{var}(\widehat{\beta} \mid X)=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{D} \mathbf{X}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- If in addition the error is homoskedastic $\mathbf{V}_{\widehat{\beta}}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.
- Unbiased estimator of σ^{2}

$$
s^{2}=\frac{\sum_{i=1}^{n} \widehat{e}_{i}^{2}}{n-k}
$$

- Unbiased estimator of $V_{\widehat{\beta}}$ for homoscedastic case

$$
\mathbf{V}_{\widehat{\beta}}^{0}=s^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- Heteroskedasticity robust estimator of $V_{\widehat{\beta}}$

$$
\boldsymbol{V}_{\widehat{\beta}}^{H C 1}=\frac{n}{n-k}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\sum_{i=1}^{n} X_{i} X_{i}^{\prime} \hat{e}_{i}^{2}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Theorem

Gauss-Markov. In the homoscedastic linear regression model with i.i.d. sampling, if $\mathbb{E}(\widetilde{\beta} \mid X)=\beta$ then $\operatorname{var}(\widetilde{\beta} \mid X) \geq \sigma^{2}\left(X X^{\prime}\right)^{-1}$.

- OLS estimator is efficient!
- Assume either autocorrelation or heteroskedasticity is present. Then $\operatorname{var}[e \mid X]=\Omega$.
- In such a case we can use GLS estimator:

$$
\widehat{\beta}_{g / s}=\left(\mathbf{X}^{\prime} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Omega^{-1} \mathbf{Y}
$$

- If $\operatorname{var}[e \mid X] \neq \sigma^{2} I$ then the GLS is efficient (not OLS).
- Modern practice is to use unefficient OLS estimator with heteroscedasticity robust variance matrix.
- However, care must be taken if sparse dummy are present in our data

Clustered samples

- Clustered sample model:

$$
\begin{gathered}
Y_{i g}=X_{i g}^{\prime} \beta+e_{i g} \text { for } g=1, \ldots, G ; i=1, \ldots, n_{g} \\
\mathbf{Y}_{g}=\mathbf{X}_{g} \beta+\mathbf{e}_{g} \text { for } g=1, \ldots, G
\end{gathered}
$$

where $\left.\mathbf{e}_{g}=\left(e_{1 g}, \ldots, e_{n_{g} g}\right)\right), g$ is the index of cluster, i is the index of observation inside the cluster

$$
\widehat{\beta}=\left(\sum_{g=1}^{G} \mathbf{X}_{g}^{\prime} \mathbf{X}_{g}\right)^{-1}\left(\sum_{g=1}^{G} \mathbf{X}_{g}^{\prime} \mathbf{Y}_{g}\right)=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

- We assume that erros for different clusters (\mathbf{e}_{g}) and (\mathbf{e}_{h}) are independent, but observations inside cluster can be dependent $\operatorname{var}\left(\mathbf{e}_{g}\right)=\Omega$.

Clustered samples

- In the case of clustered samples we use clustered version of the variance estimator:

$$
\begin{gathered}
\widehat{\mathbf{V}}_{\beta}=a_{n}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\sum_{g=1}^{G} \mathbf{X}_{g}^{\prime} \mathbf{e}_{g} \mathbf{e}_{g}^{\prime} \mathbf{X}_{g}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
a_{n}=\left(\frac{n-1}{n-k}\right)\left(\frac{G}{G-1}\right)
\end{gathered}
$$

- The clustered estimate of the variance matrix is often very different from the standard unclustered version
- The number of clusters should be treated as being the number of observations
- It is very important to identify the correct level of clustering
- if the clusters are too fine the variance matrix estimate has potentially large bias
- if clusters are too large the estimated standard errors are very large

Clustered samples

- Duflo, Dupas and Kremer (2011) investigate the impact of tracking (assigning students based on initial test score)
- Clusters on the school level $G=111$
- Estimate from the model

$$
\begin{aligned}
\text { TestScore }_{i g}= & -0.071 \\
& (0.019) \\
& {[0.054] }
\end{aligned} \begin{gathered}
0.138 \\
(0.026) \\
0.078]
\end{gathered} \text { Tracking }_{g}+e_{i g} .
$$

Bibliography

嗇 Hansen, B. (2022). Econometrics. Princeton University Press. ISBN: 9780691235899 .

