Advanced Econometrics University of Warsaw

Jerzy Mycielski

Doctoral School of Social Sciences, 2024

Jerzy Mycielski Advanced Econometrics

Linear CEF model

• Assume that CEF is the following function

$$m(x) = x_1\beta_1 + x_2\beta_2 + \cdots + x_k\beta_{k-1} + \beta_k = x'\beta.$$

• β_k is known as constant term or intercept

•
$$x = \begin{bmatrix} X_1 \\ \vdots \\ X_k \end{bmatrix}, \ \beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}$$

$$Y = X'\beta + e$$
$$E(e|X) = 0$$

• Additionaly homoscedasticity assumption $var(e|X) = \sigma^2$ is sametimes added

• • = • • = •

Linear CEF with nonlinear effects, with dummy variables

Quadratic regression

$$m(x_1, x_2) = x_1\beta_2 + x_2\beta_2 + x_1^2\beta_3 + x_2^2\beta_4 + x_1x_2\beta_5 + \beta_6$$

- It is nonlinear in the regressors x_1, x_2 but it is linear in the coefficients.
- Regression derivative w.r.t. x₁

$$\frac{\partial m(x_1, x_2)}{\partial x_1} = \beta_2 + 2x_1\beta_3 + x_2\beta_5$$

- β_5 is related to so called interaction effect
- Qualitative variables are coded using binary (dummy) variables

$$\begin{cases} X_1 = 1 & \text{if gender} = man \\ X_1 = 0 & \text{if gender} = woman. \end{cases}$$

If qualitative variable has more than s > 2 possible values we use s - 1 dummy variables to represent it

Best linear predictor

- Assume $\mathbb{E}[Y^2] < \infty$, $\mathbb{E} ||X||^2 < \infty$, $\mathbb{E}[XX']$ is positive semidefinite (invertible)
- Linear Predictor of Y given X is P [Y | X] = X'β where β minimizes the mean squared prediction error:

$$\beta = \operatorname{argmin}_{\beta \in \mathbb{R}^{k}} \mathbb{E}\left[\left(Y - X' \beta \right)^{2} \right].$$

• Solving this minimization problem gives the following formula for β (Linear Projection Coefficient)

$$\beta = \left(\mathbb{E}\left[XX'\right]\right)^{-1}\mathbb{E}\left[XY\right] = Q_{XX}^{-1}Q_{XY}$$

• Then the Best Linear Predictor (Linear Projection) is given by

$$\mathscr{P}[Y|X] = X' \left(\mathbb{E}[XX']\right)^{-1} \mathbb{E}[XY]$$

• In the linear projection model $Y = X'\beta + \alpha + e$, $\mu_Y = \mathbb{E}(Y)$, $\mu_X = \mathbb{E}(x)$

$$\alpha = \mu_Y - \mu_X \beta$$

$$\beta = \operatorname{var} [X]^{-1} \operatorname{cov} (X, Y), \quad \exists y \in \mathbb{R}$$

Wage, spline and polynomial projections

(a) Projections onto education

(b) Projections onto experience

Figure 2.6: Projections of log(*wage*) onto *education* and *experience* Source: Hansen (2022)

Omitted variable bias

• Consider the following regression model

$$Y = X_1'\beta_1 + X_2'\beta_2 + e$$

- Make Linear Projection of Y on X_1 only
- In such a case Linear Projection Coefficient is

$$\gamma_{1} = \mathbb{E} \left[X_{1} X_{1}^{\prime} \right]^{-1} \mathbb{E} \left[X_{1} Y \right]$$
$$= \mathbb{E} \left[X_{1} X_{1}^{\prime} \right]^{-1} \mathbb{E} \left[X_{1} \left(X_{1}^{\prime} \beta_{1} + X_{2}^{\prime} \beta_{2} + e \right) \right]$$
$$= \beta_{1} + \mathbb{E} \left[X_{1} X_{1}^{\prime} \right]^{-1} \mathbb{E} \left[X_{1} X_{2}^{\prime} \right] \beta_{2} = \beta_{1} + \Gamma_{12} \beta_{2}$$

• Generally speaking $\gamma_1 = \beta_1 + \Gamma_{12}\beta_2 \neq \beta_1$, the coefficient is biased estimate of $\beta_1!$

Misspecified model

Figure 2.7: Conditional Mean and Two Linear Projections

Source: Hansen (2022)

CEF and Causal effect (Potential Outcome/Rubin model)

Model

$$Y = h(D, X, U)$$

- X are observable factors, U unobservable factors
- Causal effect of D on Y is

$$C(X, U) = Y(1) - Y(0) = h(1, X, U) - h(0, X, U)$$

interpreted as change in \boldsymbol{Y} due to treatment while holding \boldsymbol{U} constant

• The conditional average causal effect o of D on Y is

$$ACE(x) = \mathbb{E}\left[C(X, U) | X = x\right] = \int_{\mathbb{R}^{d}} C(x, u) f(u|x) du$$

where f(u) is the density of U.

• The unconditional average causal effect of D on Y is

$$ACE = \mathbb{E}\left[C\left(X, U\right)\right] = \int ACE(x)f(x)dx$$

Conditional Independence Assumption (CIA)

• We say that variables U and D are conditionally independent if conditional on X the random variables D and U are statistically independent

$$f(u|D,X) = f(u|X)$$

In such a case

$$m(d, x) = \mathbb{E} [Y | D = d, X = x] = \mathbb{E} [h(d, x, U) | D = d, X = x]$$

= \mathbb{E} [h(d, x, U) | X = x]

Therefore

$$\nabla m(d, x) = m(1, x) - m(0, x)$$

= $\mathbb{E} [h(d, x, U) | X = x] - \mathbb{E} [h(0, x, U) | X = x]$
= $\mathbb{E} [C(X, U) | X = x] = ACE(x)$

• CIA implies $\nabla m(d, x) = ACE(x)$!

The concept of a random sample.

- Sample is the set {(Y_i, X_i) : i = 1, ..., n} of n realisations of the random variables (Y, X)
- The variables (*Y_i*, *X_i*) are a **sample** from the distribution *F* if they are identically distributed with distribution *F*
- The variables (Y_i, X_i) are a random sample if they are mutually independent and identically distributed (i.i.d.) across i = 1, ..., n.
- The sample have this properties if the process of selecting the sample from the population satisfies the following conditions:
 - every member of the population have the same probability of being drawn to the sample
 - the probabilities of being drawn from the population are independent: observations are independent

< 同 > < 三 > < 三 >

→ < ∃ →</p>