Advanced Econometrics

 University of WarsawJerzy Mycielski

Doctoral School of Social Sciences, 2024

- Assume that CEF is the following function

$$
m(x)=x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots+x_{k} \beta_{k-1}+\beta_{k}=x^{\prime} \beta
$$

- β_{k} is known as constant term or intercept
- $x=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{k}\end{array}\right], \beta=\left[\begin{array}{c}\beta_{1} \\ \vdots \\ \beta_{k}\end{array}\right]$

$$
\begin{aligned}
Y & =X^{\prime} \beta+e \\
E(e \mid X) & =0
\end{aligned}
$$

- Additionaly homoscedasticity assumption $\operatorname{var}(e \mid X)=\sigma^{2}$ is sametimes added

Linear CEF with nonlinear effects, with dummy variables

- Quadratic regression

$$
m(x 1, x 2)=x_{1} \beta_{2}+x_{2} \beta_{2}+x_{1}^{2} \beta_{3}+x_{2}^{2} \beta_{4}+x_{1} x_{2} \beta_{5}+\beta_{6}
$$

- It is nonlinear in the regressors x_{1}, x_{2} but it is linear in the coefficients.
- Regression derivative w.r.t. x_{1}

$$
\frac{\partial m(x 1, x 2)}{\partial x_{1}}=\beta_{2}+2 x_{1} \beta_{3}+x_{2} \beta_{5}
$$

- β_{5} is related to so called interaction effect
- Qualitative variables are coded using binary (dummy) variables

$$
\begin{cases}X_{1}=1 & \text { if gender }=\text { man } \\ X_{1}=0 & \text { if gender }=\text { woman }\end{cases}
$$

- If qualitative variable has more than $s>2$ possible values we use $s-1$ dummy variables to represent it

Best linear predictor

- Assume $\mathbb{E}\left[Y^{2}\right]<\infty, \mathbb{E}\|X\|^{2}<\infty, \mathbb{E}\left[X X^{\prime}\right]$ is positive semidefinite (invertible)
- Linear Predictor of Y given X is $\mathscr{P}[Y \mid X]=X^{\prime} \beta$ where β minimizes the mean squared prediction error:

$$
\beta=\operatorname{argmin}_{\beta \in R^{k}} \mathbb{E}\left[\left(Y-X^{\prime} \beta\right)^{2}\right] .
$$

- Solving this minimization problem gives the following formula for β (Linear Projection Coefficient)

$$
\beta=\left(\mathbb{E}\left[X X^{\prime}\right]\right)^{-1} \mathbb{E}[X Y]=Q_{X X}^{-1} Q_{X Y}
$$

- Then the Best Linear Predictor (Linear Projection) is given by

$$
\mathscr{P}[Y \mid X]=X^{\prime}\left(\mathbb{E}\left[X X^{\prime}\right]\right)^{-1} \mathbb{E}[X Y]
$$

- In the linear projection model $Y=X^{\prime} \beta+\alpha+e, \mu_{Y}=\mathbb{E}(Y)$, $\mu_{X}=\mathbb{E}(x)$

$$
\begin{aligned}
& \alpha=\mu_{Y}-\mu_{X} \beta \\
& \beta=\operatorname{var}[X]^{-1} \operatorname{cov}(X, Y)
\end{aligned}
$$

Figure 2.6: Projections of \log (wage) onto education and experience
Source: Hansen (2022)

- Consider the following regression model

$$
Y=X_{1}^{\prime} \beta_{1}+X_{2}^{\prime} \beta_{2}+e
$$

- Make Linear Projection of \dot{Y} on X_{1} only
- In such a case Linear Projection Coefficient is

$$
\begin{aligned}
\gamma_{1} & =\mathbb{E}\left[X_{1} X_{1}^{\prime}\right]^{-1} \mathbb{E}\left[X_{1} Y\right] \\
& =\mathbb{E}\left[X_{1} X_{1}^{\prime}\right]^{-1} \mathbb{E}\left[X_{1}\left(X_{1}^{\prime} \beta_{1}+X_{2}^{\prime} \beta_{2}+e\right)\right] \\
& =\beta_{1}+\mathbb{E}\left[X_{1} X_{1}^{\prime}\right]^{-1} \mathbb{E}\left[X_{1} X_{2}^{\prime}\right] \beta_{2}=\beta_{1}+\Gamma_{12} \beta_{2}
\end{aligned}
$$

- Generally speaking $\gamma_{1}=\beta_{1}+\Gamma_{12} \beta_{2} \neq \beta_{1}$, the coefficient is biased estimate of β_{1} !

Misspecified model

Figure 2.7: Conditional Mean and Two Linear Projections

Source: Hansen (2022)

CEF and Causal effect (Potential Outcome/Rubin model)

- Model

$$
Y=h(D, X, U)
$$

- X are observable factors, U unobservable factors
- Causal effect of D on Y is

$$
C(X, U)=Y(1)-Y(0)=h(1, X, U)-h(0, X, U)
$$

interpreted as change in Y due to treatment while holding U constant

- The conditional average causal effect o of D on Y is

$$
A C E(x)=\mathbb{E}[C(X, U) \mid X=x]=\int_{\mathbb{R}^{\prime}} C(x, u) f(u \mid x) d u
$$

where $f(u)$ is the density of U.

- The unconditional average causal effect of D on Y is

$$
A C E=\mathbb{E}[C(X, U)]=\int A C E(x) f(x) d x
$$

Conditional Independence Assumption (CIA)

- We say that variables U and D are conditionally independent if conditional on X the random variables D and U are statistically independent

$$
f(u \mid D, X)=f(u \mid X)
$$

- In such a case

$$
\begin{aligned}
m(d, x) & =\mathbb{E}[Y \mid D=d, X=x]=\mathbb{E}[h(d, x, U) \mid D=d, X=x] \\
& =\mathbb{E}[h(d, x, U) \mid X=x]
\end{aligned}
$$

- Therefore

$$
\begin{aligned}
\nabla m(d, x) & =m(1, x)-m(0, x) \\
& =\mathbb{E}[h(d, x, U) \mid X=x]-\mathbb{E}[h(0, x, U) \mid X=x] \\
& =\mathbb{E}[C(X, U) \mid X=x]=A C E(x)
\end{aligned}
$$

- CIA implies $\nabla m(d, x)=A C E(x)$!
- Sample is the set $\left\{\left(Y_{i}, X_{i}\right): i=1, \ldots, n\right\}$ of n realisations of the random variables (Y, X)
- The variables $\left(Y_{i}, X_{i}\right)$ are a sample from the distribution F if they are identically distributed with distribution F
- The variables (Y_{i}, X_{i}) are a random sample if they are mutually independent and identically distributed (i.i.d.) across $i=1, \ldots, n$.
- The sample have this properties if the process of selecting the sample from the population satisfies the following conditions:
- every member of the population have the same probability of being drawn to the sample
- the probabilities of being drawn from the population are independent: observations are independent

Bibliography

嗇 Hansen, B. (2022). Econometrics. Princeton University Press. ISBN: 9780691235899 .

