Unconditional and conditional expectations

- Definition
 - Discrete random variables: $E(y) = \sum_{i=1}^{n} p_i y_i$
 - Continuous random variables: $E(y) = \int_{y \in Y} yf(y) dy$, where *Y* is the set possible values of *y*
- Definition
 - Discrete random variables: $E(y|x) = \sum_{i=1}^{n} p_i(y|x) y_i$
 - Continous random variables: $E(y|x) = \int_{x \in X} xf(y|x) dx$

Properties of conditional expectations

• Law of iterated expectation. If $\boldsymbol{x} = f(\boldsymbol{w})$

$$E(y | \boldsymbol{x}) = E(E(y | \boldsymbol{w}) | \boldsymbol{x})$$
$$E(y | \boldsymbol{x}) = E(E(y | \boldsymbol{x}) | \boldsymbol{w})$$

- The smaller information set always dominates!
- The special case

$$E(y | \boldsymbol{x}) = E(E(y | \boldsymbol{x}, \boldsymbol{z}) | \boldsymbol{x})$$

• Conditional expectations are linear

- y, x random
- $\boldsymbol{a}(x)$, $\boldsymbol{B}(x)$ functions of \boldsymbol{x}
- Function a + By

$$\mathbf{E}\left[\boldsymbol{a}\left(\boldsymbol{x}\right) + \boldsymbol{B}\left(\boldsymbol{x}\right)y \left|\boldsymbol{x}\right] = \boldsymbol{a}\left(\boldsymbol{x}\right) + \boldsymbol{B}\left(\boldsymbol{x}\right)\mathbf{E}\left(y \left|\boldsymbol{x}\right)\right)$$

• If $E(y^2) < \infty$ and $\mu(x) = E(y|x)$, than $\mu(x)$ is the solution of

$$\min_{m \in M} \mathbb{E}\left[y - m\left(\boldsymbol{x}\right)\right]^{2}$$

• Conditional expectation is the **minimum mean square error predictor** of y based on information contained in x

Partial Effects

Example 1. *GUS Data - December labour survey* 2002

- - Question: what is the difference between the wage of women an men.
 - The simplest way of analysis: compare the means

category	mean gross wage
men	2487 zł
women	2042 zł

Result: difference 445 zł

- Problem: women work experience is shorter than men's - it is possible that the difference in wages can be explained by the difference in

experience

category	work experience
men	18.49 years
women	18.07 years

- If it is the discrimination on the labour market which is of interest that the proper statement of the research question should be the following:
 - * what is the difference between the wages of men and women holding all other factors fixed (ceteris paribus)
 - * such an effect can be defined as effect of a variable w on E(y|w, c) holding the **control variables** c constant.
 - * For discrete variable w partial effect is defined as

 $\mathrm{E}\left(y\left|w_{i},\boldsymbol{c}\right.\right)-\mathrm{E}\left(y\left|w_{j},\boldsymbol{c}\right.\right)$

where w_i and w_j are possible levels of w

- Usually we infer the causal relationship from the theory rather that from data - the correlation between variables can only prove such

relationships in controlled experiments.

Example 2. cont.

• The partial effect of the sex on wage:

E(y | man, experience) - E(y | woman, experience)

- Result of estimation (OLS)

partial effect	estimate
Sex	-435.4

- But working women are batter educated than man.
- Partial effect:

E(y | man, experience, education) - E(y | woman, experience, education)

partial effect	estimate
Sex	-747.9

Assumptions

- Sample
 - We will adopt random sampling assumption:
 - * population model (e.g. for people *in* the workforce)
 - * independent identically distributed (*iid*) draws from the sample
 - for most of the lecture we will analyse the survey data
 - generalizations will be required of *iid* asumption are necessary to cover cluster sampling, stratified sampling or panels (these samples are not *iid*)

• Regressors

- in Classical Regression Model we have

$$y_i = \boldsymbol{\beta}_0 + \boldsymbol{x}_i \, \boldsymbol{\beta} + \boldsymbol{u}_i$$

- we assume that regressors x_i are fixed (nonrandom)
- for u_i we assume that u_i are *iid* with $E(u_i) = 0$ and $Var(u_i) = \sigma^2$
- if sample is random u_i are *iid* by definition!
- what is interesting in nonexperimental framework is the relation between x_i and u_i
- if x_i is nonrandom than x_i and u_i are independent by definition!
- does it make sense to assume that regressors are nonrandom if we do not control them?
- for nonexperimental data fixed regressors assumption is nonrealistic
- Conclusion: regressors should be treated as random variables
- **Consequence:** most of the results derived will only be asymptotic

Conditional Expectations

- Most applied econometrics deals with estimation of an effect on
 - expectation of explained variable (dependent variable, regressand, response variable)
 - *conditional* on a set of explanatory variables (independent, regressors, control variables, covariates)
- If $E(|y|) < \infty$ than we can define

$$\mathrm{E}\left(y\,|x_1,\ldots,x_K\right) = \boldsymbol{\mu}\left(x_1,\ldots,x_K\right)$$

• Conditional expectation is a function determining what will be the expected (average) value of y for given x_1, \ldots, x_K

- If x_1, \ldots, x_K are random than conditional expectation $\mathbf{E}(y | x_1, \ldots, x_K)$ is also random
- Simple properties of conditional expectations
 - if we know x, than the expected value of x is equal to x

 $\mathbf{E}\left(x\right|x) = x$

 – conditional expected value (average) of weighted sum of variables is equal to weighted sum of conditional expected values (averages) of the variables

$$\operatorname{E}\left(a_{1}x_{1}+\ldots+a_{k}x_{k}|\boldsymbol{z}\right)=a_{1}\operatorname{E}\left(x_{1}|\boldsymbol{z}\right)+\ldots+a_{K}\operatorname{E}\left(x_{K}|\boldsymbol{z}\right)$$

• Model in error form

$$y = \mathrm{E}\left(y \left| \boldsymbol{x} \right.\right) + u$$

$$\mathbf{E}\left(u\left|\boldsymbol{x}\right.\right)=0$$

Example 3. *Typical models*

$$\mathbf{E}\left(y\left|x_{1}, x_{2}\right)\right) = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}x_{1} + \boldsymbol{\beta}_{2}x_{2} \tag{1}$$

$$E(y|x_1, x_2) = \exp(\beta_0 + \beta_1 \log(x_1) + \beta_2 x_2)$$
(2)

• Define $u = \beta_0 + \beta_1 x_1 + \beta_2 x_2$, then $E(u|x_1, x_2) = 0$ and model (1) can be reformulated as follows

$$y = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 x_1 + \boldsymbol{\beta}_2 x_2 + u$$

Microeconometrics, WNE UW, Copyright ©2023 by Jerzy Mycielski

$$E(y | x_1, x_2) = E(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + u | x_1, x_2)$$

= $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + E(u | x_1, x_2) = 0$
= $\beta_0 + \beta_1 x_1 + \beta_2 x_2$

Partial effects

• continuous variable

$$\Delta \operatorname{E}(y | \boldsymbol{x}) \approx \frac{\partial \boldsymbol{\mu}(\boldsymbol{x})}{\partial x_j} \Delta x_j \text{ for fixed } x_1, \dots, x_{j-1}, x_{j+1}, x_K$$

$$\frac{\partial \operatorname{E} \left(y \left| \boldsymbol{x} \right) \right)}{\partial x_1} = \boldsymbol{\beta}_1, \frac{\partial \operatorname{E} \left(y \left| \boldsymbol{x} \right) \right)}{\partial x_2} = \boldsymbol{\beta}_2$$

For (2)

$$\frac{\partial \operatorname{E}(y | \boldsymbol{x})}{\partial x_{1}} = \exp\left(\cdot\right) \frac{\boldsymbol{\beta}_{1}}{x_{1}}, \frac{\partial \operatorname{E}(y | \boldsymbol{x})}{\partial x_{2}} = \exp\left(\cdot\right) \boldsymbol{\beta}_{2}$$

Microeconometrics, WNE UW, Copyright ©2023 by Jerzy Mycielski

Notice that for model (2) partial effects are not constant across values of x_1, x_2

• Partial elasticity

$$\frac{\partial \operatorname{E}(y | \boldsymbol{x})}{\partial x_{j}} \frac{x_{j}}{\operatorname{E}(y | \boldsymbol{x})} = \frac{\partial \boldsymbol{\mu}(\boldsymbol{x})}{\partial x_{j}} \frac{x_{j}}{\boldsymbol{\mu}(\boldsymbol{x})}$$

• For $E(y|\boldsymbol{x}) > 0$ and $x_j > 0$ it can also be defined as

$$\frac{\partial \log \mathbf{E} \left(y \,| \boldsymbol{x} \right)}{\partial \log x_j} \tag{3}$$

Example 4. Partial elasticity with respect to x_1 in model (2) is equal to:

$$\frac{\partial \log \mathbf{E} \left(y \left| x_1, x_2 \right) \right)}{\partial \log x_1} = \frac{\partial \left(\boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \log \left(x_1 \right) + \boldsymbol{\beta}_2 x_2 \right)}{\partial \log \left(x_1 \right)} = \boldsymbol{\beta}_1$$

 $oldsymbol{eta}_1$

Microeconometrics, WNE UW, Copyright ©2023 by Jerzy Mycielski

• Sometimes we also use the definition

$$\frac{\partial \operatorname{E}\left(\log y \,|\, \boldsymbol{x}\right)}{\partial \log x_1} \tag{4}$$

Example 5. We often define similar (but not identical) model to model (2)

$$\operatorname{E}\left(\log y | x_1, x_2\right) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \log\left(x_1\right) + \boldsymbol{\beta}_2 x_2$$

in this case it is not possible to use directly the definition (3) as $\log E(y|x) \neq E(\log y | x)$ but it easy to use definition (4)

$$\frac{\partial \operatorname{E} \left(\log y \, | x_1, x_2 \right)}{\partial \log x_1} = \frac{\partial \left(\boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \log \left(x_1 \right) + \boldsymbol{\beta}_2 x_2 \right)}{\partial \log x_1} = \boldsymbol{\beta}_1$$

• Definitions (3) and (4) equivalent only if x independent of u.

Example 6. Partial elasticity y in model (2) with respect to x_1 is equal to β_1

• Partial semielasticity

$$100 \times \frac{\partial \operatorname{E}(y | \boldsymbol{x})}{\partial x_1} \frac{1}{\operatorname{E}(y | \boldsymbol{x})}$$

- Interpretation of partial elasticity: expected percentage change of y if x change by 1 percent
- Interpretation of partial semielasticity: expected percentage change of y if x change by 1
- Sometimes *y* is influenced by some unobserved variable *q* (unobserved heterogeneity)
- The partial effect calculated from the model not including q is equal to the

average over q of partial offect: average partial effect (APE)

 $\boldsymbol{\delta}_{j}\left(\boldsymbol{x}^{0}
ight)=\mathrm{E}_{q}\left[\mathrm{E}\left(y\left|\boldsymbol{x,q}
ight)
ight]$