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Model

Linear equation

yi = x1i β1 + x2i β2 + . . .+ xKi βK + εi , dla i = 1, . . . ,N,

Elements

dependent (endogenous) variable yi
independent (exogenous) variables x1i , . . . , xKi
parameters β1, . . . , βK
error term εi
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Estimated equation

Similar to model

byi = x1ib1 + x2ib2 + . . .+ xKibK .

Di¤erences:

�tted values byi instead of dependent variable yi
estimates b1, . . . , bK instead of parameters β1, . . . , βK
residuals ei instead of error terms εi

Parameters are nonrandom but estimates are random
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Fitted regression line (simulated data)
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Same model di¤erent sample
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Residual and the �t of the model

De�nition of the residual

ei = yi � x1ib1 � x2ib2 � . . .� xKibK = yi � byi .
Therefore

yi = byi + ei = x1ib1 + x2ib2 + . . .+ xKibK + ei .
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Fitting the regression line
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Minimization problem

The �t is the best if the sum of squares of residuals is the
smallest possible:

min
b
S (b) = min

b

N

∑
i=1
(yi � byi )2 = min

b

N

∑
i=1
e2i .

Soluton of this minimization problem gives the formula for
OLS estimator b
This also explains why this estimator is called Least Squares
estimator
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Matrix formulation of te model264 y1
...
yN

375
| {z }

y

=

264 x11 � � � xK 1
...
x1N � � � xKN

375
| {z }

X

264 β1
...

βK

375
| {z }

β

+

264 ε1
...
εN

375
| {z }

ε

,

Therefore we can write:

y = Xβ+ ε

Similarly
e = y�Xb = y� by.
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We sometimes use as well the notation

yi =
�
x1i � � � xKi

�| {z }
xi

264 β1
...

βK

375
| {z }

β

+ εi ,

so that
yi = xiβ+ εi , for i = 1, . . . ,N
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Solution of Least Squares problem

First order derivative of S (b) w.r.t. b:

∂S (b)
∂b

= �2X0y+ 2X0Xb.

First order conditions (system of normal equations)

X0Xb = X0y

Solution (OLS estimator):

b = (X0X)�1 X0y .

But:

Matrix X has to be invertible (if it is not we have perfect
collinearity)
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R2

Total Sum of Squares

TSS =
N

∑
i=1
(yi � y)2 = (y� y)0 (y� y)

Explained Sum of Squares

ESS =
N

∑
i=1

�byi � by�2 = �by� by�0 �by� by�
Residual Sum of Squares

RSS=
N

∑
i=1
e2i = e

0e

It can be proven that

TSS = ESS + RSS



Ordinary Least Squares Matrix notation E¢ ciency of OLS

R2

So we can de�ne:

R2 =
ESS
TSS

=
explained variation
total variation

and
0 � R2 � 1

R2 can be interpreted as percent of total variation of
dependent variable explained by the model



Ordinary Least Squares Matrix notation E¢ ciency of OLS

Dummy variables

Dummy variable can only take values 0 or 1

De�ne a model

yi = β1x1i + . . .+ βK xKi + γDi + εi .

For Dj = 0
yi = β1x1i + . . .+ βK xKi + εi .

For Dj = 1,

yj = β1x1j + . . .+ βK xKj + γ+ εj .

So the di¤erence between expected values of yi and yj is equal
to

E (yj )� E (yi ) = γ.
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Dummy variables

General case

yi = xiβ+ γ0 +
S

∑
s=2

Ds ,iγs + εi .

For zi = 1, zj = s:

E (yj )� E (yi ) = xβ+ γ0 + γs � xβ� γ0 = γs
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Classical regression model - assumptions

1 Model is linear:

yi = x1i β1 + . . .+ xKi βK + εi for i = 1, . . . ,N.

or:
y = Xβ+ ε.

2 Explanarory variables x1i , . . . , xki are nonrandom for
i = 1, . . . ,N

3 Expected value of the error therm is equal to zero:

E (εi ) = 0 dla i = 1, . . . ,N.

or:
E (ε) = 0.
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Classical regression model - assumptions

4. Covariance (correlation) between two error terms is equal to
zero:

Cov (εi , εj ) = 0 dla i 6= j .
Absence of autocorrelation

5. Variance is the same for all observations (homoscedasticity):

Var (εi ) = σ2 dla i = 1, . . . ,N.

Two last assumptions can be formulated as Var (ε) = σ2I
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Properties of OLS estimator in CRM

OLS estimator is unbiased

E (b) = E
�
(X0X)�1 X0Xβ

�
+ E

�
(X0X)�1 X0ε

�
= E (β) + (X0X)�1 X0E (ε)|{z}

0

= β.

Variance of the OLS estimator is equal to

Var (b) = Var
�

β+ (X0X)�1 X0ε
�

= (X0X)�1 X0Var (ε)| {z }
σ2I

X (X0X)�1

= σ2 (X0X)�1 X0IX (X0X)�1

= σ2 (X0X)�1 = ° ,
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Properties of OLS estimator in CRM

It can be proven that

s2 =
e0e

N �K =
∑N
i=1 e

2
i

N �K .

is unbiased estimator of σ2

So ° can be estimated with

b° =s2 �X0X��1
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Theorem (Gauss-Markov)

Under assumptions of CRM, OLS estimator is best linear unbiased
estimator (BLUE)
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Hypotesis testing

Additional assumption of normality of error term
ε sN

�
0, σ2I

�
needed for derivation of statisitics distributions

Simple hypotesis �
H0 : βk = β�k
H1 : βk 6= β�k

.

Test statistics

t =
bk�β�kbse (bk ) s tN�K

Most popular case - testing signi�cance of the variables�
H0 : βk = 0
H1 : βk 6= 0

.

Indeed if βk = 0 then variable is redundant in our model

yi = β0 + . . .+ βk|{z}
0

xki + . . .+ βK xKi + εi ,

Statistics t = bkbse(bk )
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Hypotesis testing

General case: joint hypotesis

H0 : Hβ = h

Statistics

F =
(e0ReR � e0e)

�
g

e0e/ (N �K )
s F (g ,N �K ) ,

where eR are residuals of the restricted model (model
estimated under assumption that H0 is true)
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Hypotesis testing

Signi�cance intervals

Pr
�
bk � bse (bk ) t α

2
< βk < bk + bse (bk ) t α

2

�
= 1� α
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