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Ordinary Least Squares
°

Model

@ Linear equation

YI':Xli,B]_+X2i,82+---+XKi,BK+€ir dai=1,..., N,

o Elements

dependent (endogenous) variable y;
independent (exogenous) variables xq;, ..., Xk;

parameters f{,..., By
error term §;



Ordinary Least Squares
°

Estimated equation

@ Similar to model
yi = x1ib1 + x0iby 4 ... 4 xkibk.

@ Differences:

o fitted values y; instead of dependent variable y;
o estimates by, ..., by instead of parameters B;,..., By
e residuals e; instead of error terms ¢;

@ Parameters are nonrandom but estimates are random
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Fitted regression line (simulated data)
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Same model different sample




Ordinary Least Squares
°

Residual and the fit of the model

@ Definition of the residual
e =Yy — xiibi — xoiby — ... — xkibk = yi — ¥i.
@ Therefore

Yi =Yi+ e =xiibi + x0iby + ... + xkibk + €;.



Ordinary Least Squares
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Fitting the regression line

L

y(l)=8+1,5*x(t)+e(|t)

e(t)~N(O,

5.56

6.57

7.




Ordinary Least Squares
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Minimization problem

@ The fit is the best if the sum of squares of residuals is the
smallest possible:

N

N
mbinS(b) = mbin; (yi —)7,')2 = mbin;e?.

@ Soluton of this minimization problem gives the formula for
OLS estimator b

@ This also explains why this estimator is called Least Squares
estimator



Matrix notation

@ Matrix formulation of te model

y1 X1 ottt XK1 B, €1
= : S e o

YN XIN * XKN Bk ey
e — —

y X B £

@ Therefore we can write:
y=XB+e

@ Similarly
e=y—Xb=y-Yy.



Matrix notation

@ We sometimes use as well the notation

B1
vi=[xi - xki]| : + €,

P
———

B

@ so that
y;:X/ﬁ+€i, fori=1,....,N



Matrix notation
°

Solution of Least Squares problem
o First order derivative of S (b) w.r.t. b:

35 (b)

920) _ _ox'y + 2X'Xb.
ob y+

e First order conditions (system of normal equations)

X'Xb = X'y

@ Solution (OLS estimator):

b= (X'X)""Xly|.

e But:

o Matrix X has to be invertible (if it is not we have perfect
collinearity)
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Matrix notation
L Ie]

Total Sum of Squares

TSS = Z (y=9'(y-9)

Explained Sum of Squares

ess - (37" - (5-9) (5-9)
Residual Sum of Squares

N
RSS=)Y e =¢€e

i=1

It can be proven that

TSS = ESS + RSS



R2

Matrix notation
oe

@ So we can define:

ESS  explained variation

R? — —
TSS total variation

@ and
0<R?*<1

@ R? can be interpreted as percent of total variation of
dependent variable explained by the model



Matrix notation
®0

Dummy variables

(]

Dummy variable can only take values 0 or 1

Define a model

yi = Byxti+ ...+ Byxki +vDj + €.

@ For D; =0
Vi = Bixti+ ...+ Byxki + €.
e For D; =1,
Yi = Byxij o Brxg ot g
@ So the difference between expected values of y; and y; is equal

to
E(y)) —E(i)=1.



Matrix notation
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Dummy variables

o General case

s
yi=xiB+v+ Y, Dsivs +éi.

s=2

@ Forzi=1,z =s:

E(y)) —EWi) =xB+7+7s —xB—7 = 7s



Matrix notation
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Classical regression model - assumptions

@ Model is linear:

y;:X1/ﬁ1—|—...+XK,'ﬁK—I-8,' for i=1,...

or:
y=XB+e.
@ Explanarory variables xj, ..., xk are nonrandom for
i=1,...,N

© Expected value of the error therm is equal to zero:
E(¢)=0 dla i=1,...,N.

| E(e) =0.
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Classical regression model - assumptions

4. Covariance (correlation) between two error terms is equal to
zero:

Cov (8,‘,8]) =0 dla i 75_]
Absence of autocorrelation

5. Variance is the same for all observations (homoscedasticity):
Var (¢;)) =0 dla i=1,...,N.

@ Two last assumptions can be formulated as Var (¢) = ¢l



Matrix notation
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Properties of OLS estimator in CRM

@ OLS estimator is unbiased

E(b) = E(( X) XXﬁ)+E<( X) x’)
—E(B) + (X'X) ' XE (¢) = B.
el

@ Variance of the OLS estimator is equal to

Var (b) = Var (B + (X'X) " Xe)

= (X'X)" ! X'Var (£)X (X'X)
o2l

2 (X'X) I XX (X'X)

=0
_ 0.2 (Xlx)_l — °,
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Properties of OLS estimator in CRM

@ It can be proven that

/ N 2
2 ee _ Li=1€

*TN-K N-K

is unbiased estimator of o2

@ So ° can be estimated with

T=s? (X'X) 7"



Efficiency of OLS

Theorem (Gauss-Markov)

Under assumptions of CRM, OLS estimator is best linear unbiased
estimator (BLUE)




Efficiency of OLS
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Hypotesis testing

e Additional assumption of normality of error term
e ~N (0,0°1) needed for derivation of statisitics distributions

@ Simple hypotesis
{HO By = By
Hi: By # By
@ Test statistics
bi—By

t =

~ ty—
% (by) N—K
Most popular case - testing significance of the variables
{H() . :Bk =0
Hi: B 70
Indeed if B, = 0 then variable is redundant in our model
Yi=PByt ...+ By Xkit ...+ Byxki + &,
0

by

@ Statistics t = %060




Efficiency of OLS
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Hypotesis testing

@ General case: joint hypotesis
Ho :HB =h
@ Statistics

_ (eker—¢€e)/¢g
ee/ (N —K)

~ F(g,N—-K),

@ where eg are residuals of the restricted model (model
estimated under assumption that Hp is true)



Efficiency of OLS
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Hypotesis testing

@ Significance intervals

Pr(bk—fe(bk)fg <:Bk<bk+§é(bk>t%> =1—a
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