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Limited dependent and qualitative variables
It is often the case (especially in the case of micro level data)
that the set of possible values of the dependent variable
domain is not equal to R (set of real numbers)
Such dependent variable cannot be represented by standard
linear model:

Y = Xβ + ε, ε ∼ IID

without imposing restrictions on the sets of possible values of
X , and β and ε.

The examples of such a case are:
binary response variable (e.g. employment status: working, not
working)
qualitative, ordered response variables (e.g. education:
primary, secondary, higher)
qualitative unordered response variable (e.g. choice of
transportation mode: car, bus, tram)
limited depended response variable (e.g. spendings for food ≥
0)

Jerzy Mycielski Advanced Econometrics



Latent variable models

One common solution to define the correct model for limited
or qualitative dependent variable
Latent variable cannot be observed directly but influences the
variable which is observable.
Usually we assume that latent variable id generated from
linear model:

Y ∗ = Xβ + ε, ε ∼ IID

Relationship between latent variable depends on the model.
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Qualitative depend variable
Binary choice data

Y =
{

1 if Y ∗ > 0
0 if Y ∗ ≤ 0

depending on the choice of distribution of ε: Linear
Probability Model, logit, probit
Qualitative, ordered response data

Y =



0 if Y ∗ < a1

1 if a1 < Y ∗ ≤ a2
...
J if aJ−1 < Y ∗ ≤ aJ

where a1, . . . , aJ are additional parameters to be estimated
Depending on the choice of distribution of ε: ordered probit,
ordered logit (Proportonal Odds Model - POM)
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Example: binary regression

Source: Hansen (2022)
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Identification and normalization of dispersion parameter

Assume that in original model Var (ε) = σ2:

Y =
{

Y = 0 for X ′β + ε < 0
Y = 1 dla X ′β + ε ≥ 0

Normalize this equation by dividing β and ε by σ:

yi =
{

Y = 0 dla X ′ β
σ + εi

σ < 0
Y = 1 dla X ′ β

σ + εi
σ ≥ 0

Notice that these two models are observationally equivalent!
Parameter σ is not identified.
This model can only be estimated for normalized σ = 1:

yi =
{

yi = 0 dla xiβ
∗ + ε∗

i < 0
yi = 1 dla xiβ

∗ + ε∗
i ≥ 0
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Qualitative depend variable
Qualitative unordered response variable

Y ∗
i = Xiβi + εi , εi ∼ IID

Y = max
i

{Y ∗
1 , . . . , Y ∗

J }

special cases:
βi = β conditional logit, data consist the characteristics of all
the choices, we observe which choice was made.

This model is closely realated to theory of consumer/firm
choice. Y ∗ can be intepreted as utility/profit.
If price is included as one of the attributes we can estimate
Willigness To Pay for this attribute as

WTP = − βk

βP

This property of conditional logit is often used experimental
economics in Discrete Choice Experiments (DCE)

Xi = X multinominal logit, data consist only the attributes of
agents making decisions.

εi has extreme value type 1 distribution
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Independence on Irrelevant Alternatives

The assumption that εi are independent across alternatives
important - together with the choice of distribution it implies
that relative probabilities of two choices (Odds) only
dependent on differences between characteristics of these
choices and not other choices (Independence on Irrelevant
Alternatives - IIA)
For similar choice IIA can result in counterintuitive predictions
of the model (“red bus/blue bus puzzle”)
This limitation of the conditional logit model resulted in many
modifications of this model

mixed logit: β parameter is random and varies across
individuals
hierarchical logit: εi are not independent and given by GEV
(Generalized Extreme Value) distribution
conditional probit: εi is normaly distributed and correlated
across alternatives
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Limited dependent response variable
Limited depended response variable

Y =
{

0 if Y ∗ ≤ a
Y ∗ if Y ∗ > a

This model is known as tobit model.
Usually we assume that ε has normal distribution.
Interval regression model

Y =



0 if Y ∗ < a1

1 if a1 < Y ∗ ≤ a2
...
J if aJ−1 < Y ∗ ≤ aJ

and aj are known.
It is also possible to define a model which is a mixture of the
tobit and interval regression models
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Count data models

Sometimes Y has values which are natural numbers (counts).
Such variable is quantitative however it is not continous and
therefore cannot be represented with linear model with
continously distributed error term.
Assume Y has descrete random distribution with location
parameter being a function of explanatory variables.
Example: Poisson model

Pr (Y = y | x) = e−λ(X ′β) [λ (X ′β)]y

y !

as λ (X ′β) > 0 it is usually assumed that λ (X ′β) = eX ′β
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Limitations of the Poisson model

Notice that in Poisson model

E (Y | x) = var (Y | x) = eX ′β

We often observe underdispersion (E (Y | x) > Var (Y | x)) or
overdispersion (E (Y | x) > Var (Y | x))
In such cases instead of Poisson distribution, we could use
negative binomial model
It was however shown that even if E (Y | x) ̸= var (Y | x) but
E (Y | x) is correctly specified ML estimators of β are
consistent.
The are cases when observations of zero is generated from
different mechanism then other counts (e.g. number of
children, number of cigarettes smoked) in these cases we use

Zero Inflated Poisson (ZIP)
hurdle models
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Interpretation of the parameters

Sometimes the effect on Y ∗ is the one of interest (e.g. partial
observability of variable of interest)
In such a case the regression derivative is:

∂E (Y ∗| X )
∂X = β

In other cases, especially if Y ∗ do not have clear intepretation
we are interested in regression derivative for probabilities of
observable variable Y :

∂Pr (Y = j | X )
∂X

or in unconditional or conditional expected values of Y e.g.
for tobit model

∂E (Y | X )
∂X ,

∂E (Y | Y > 0, X )
∂X
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Generalized Linear Models (GLM)
Many of the popular limited dependent, qualitative or count
variable models can be considered as members of the class
known as GLM.
For GLM models we assume that there is a function (link
function) for which

g [E (yi | xi)] = xiβ or
E (yi | xi) = g−1 (xiβ)

We also assume that yi exponential family of distributions
e.g.: binomial, Poisson, negative binomial, gaussian, inverted
gaussian, gamma
The popular link functions are: identity g (µ) = µ, log:
g (µ) = ln (µ), logit: g (µ) = ln

(
µ

1−µ

)
, probit:

g (µ) = Φ−1 (µ), power: g (µ) = µn, negative binomial
g (µ) = ln

(
µ

µ+k

)
, loglog: g (µ) = − ln (− ln µ)

Only some of the combinations of link functions and
distributions make sense
This models are usually estimated with ML estimators.Jerzy Mycielski Advanced Econometrics



Delta method

We often need to find distributions of the functions of
estimated parameters (e.g. to calculate confidence intervals of
regression derivatives)
Direct derivation of this distributions is usually infeasible
However, we can obtain asymptotic aproximations of these
distributions using delta method
Assume that √

n (µ̂ − µ) d−→ N (0, V )

Then if g () is differentiable in the neighborhood of µ

√
n (g (µ̂) − g (µ)) d−→ N

(
0, G′VG

)
where G = ∂

∂u g (u)′.
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Resampling methods

Derivation of the final sample distributions is often practicaly
impossible
It also happens that even the derivation of the asymptotic
distributions of the statistics is cumbersome
In this cases resampling methods are often used as a tool to

obtain in a simple way asymptotically valid aproximation of the
distributions of statistics
improve the quality of approximations relative to standard
methods (asymptotic refinement)

There are two main resampling methods used:
jackknife
bootstrap

Jacknife is a simpler method but bootstrap is more general
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Jackknife
Jackknife sample is constructed by omitting observation i
In this way we obtain n samples
For every one these samples we obtain calculate estimator
θ̂(−i)
The Tukey’s jackknife estimator of variance

V̂
θ̂

= n − 1
n

n∑
i=1

(
θ̂(−i) − θ̂(−i)

) (
θ̂(−i) − θ̂(−i)

)′

This method can also be used for estimation of the variance
of transformations of estimators g

(
θ̂
)

When used for clustered samples, we omit one cluster rather
than one observation
It can be proven that under quite general conditions jackknife
estimator of variance is equivalent (but not better) to one
obtained with delta method but does not require calculation
of derivatives
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Bootstrap
This method is based on drawing randomly with replacement
the bootstrap sample from original sample.
Notice that bootstrap sample contains some duplicates of
original observations
Number of bootstraped samples B can be made arbitrary large
Bootstrap can be used to estimate variance of the estimator:

V̂boot
θ̂

= n − 1
n

n∑
i=1

(
θ̂∗ (b) − θ̂

∗) (
θ̂(−i) − θ̂(−i)

)′

It can be proven that θ̂∗ (b) is converging in probability, and
also in distribution to θ̂.
It was also proven that V̂boot

θ̂

p∗
−→ V

θ̂

It is suggested that trimmed (with extreme θ̂∗ (b) deleted
from the sample) bootstrap estimator of variance has batter
properties
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Bootstrap confidence intervals

Bootstrap can also be used to construct confidence intervals
e.g. percentile t-interval

T ∗ = θ̂∗ − θ̂

se
(
θ̂∗

)
Cpt =

[
θ̂ − se

(
θ̂
)

q̂∗
1− α

2
, θ̂ − se

(
θ̂
)

q̂∗
α
2

]
Percentile t-interval achieves an asymptotic refinement
(converges to true values with the rate n rather than

√
n)

Boostrap p-values

p∗ = 1
B

B∑
b=1

I (|T ∗ (b)| > |T |)
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