OLS and Haavelmo bias

- Generally in each equation of the structural form we have several endogenous variables
- *OLS* applied to separate equations will give inconsistent estimates (simultaneity bias)
- The bias is the result of the correlation between explanatory variables and dependent variable.

Example 1. (Keynes consumption function and GDP identity)

 $C = \boldsymbol{\alpha}_0 + \boldsymbol{\alpha}_1 Y + \boldsymbol{\varepsilon}$ Y = C + I + G

Assume that investments and government expenditures are exogenous. *C* is correlated with ε and *Y* is a function of $C \Longrightarrow Y$ correlated with ε

Indirect OLS

- Estimation of the reduced form
 - on the right hand side we only have the exogenous variables
 - on the left hand side endogenous variables
 - assume the homoscedasticity and no autocorrelation
- For each equation of the reduced form we can use the *OLS* and obtain unbiased estimates of multipliers
- Is it possible to obtain the estimates of structural parameters on the basis of estimates of multipliers?
- Elements of the matrix Π are functions of elements of matrices A and B as $\Pi = A^{-1}B$

- When it is possible to derive A and B from the system of equations $\widehat{\Pi} = \widehat{A}^{-1}\widehat{B}$?
- If structural model is:
 - not identified: no unique solution
 - exactly identified: one solution
 - overidentified: several contradictory solutions

Example 2. (demand and supply - original overidentified model)

$$\widehat{oldsymbol{eta}}_1 = rac{\widehat{oldsymbol{\pi}}_{11}}{\widehat{oldsymbol{\pi}}_{21}}, \ \widehat{oldsymbol{eta}}_1 = rac{\widehat{oldsymbol{\pi}}_{12}}{\widehat{oldsymbol{\pi}}_{22}}, \ \widehat{oldsymbol{eta}}_2 = -\widehat{oldsymbol{\pi}}_{23}\left(\widehat{oldsymbol{eta}}_1 - \widehat{oldsymbol{lpha}}_1
ight)$$

$$\widehat{oldsymbol{lpha}}_1 = rac{\widehat{oldsymbol{\pi}}_{13}}{\widehat{oldsymbol{\pi}}_{23}}, \ \widehat{oldsymbol{lpha}}_2 = \widehat{oldsymbol{\pi}}_{22} \left(\widehat{oldsymbol{eta}}_1 - \widehat{oldsymbol{lpha}}_1
ight), \ oldsymbol{lpha}_0 = \widehat{oldsymbol{\pi}}_{21} \left(\widehat{oldsymbol{eta}}_1 - \widehat{oldsymbol{lpha}}_1
ight)$$

Two alternative estimators for β_1 parameter!

- Is there something wrong with indirect *OLS*? If the model is correctly specified the alternative estimators should ultimately converge to the parameter value.
- However: in small samples the estimates obtained from them will generally be different.
- Is it then better to have exactly identified model rather than overidentified one?
 - The overidentifing restrictions represent the theoretical knowledge (a priori knowledge - not coming from data) which should improve the quality of estimates
 - But: indirect OLS is not well suited as an estimation method for an overidentified model

Instrumental variable method - single equation approach

- With instrumental variable method we can estimate the regression equation even if the explanatory variables are correlated with the error term
- Instruments \boldsymbol{W}_t
 - are correlated with X_t
 - are not correlated with ε_t
- Fitted values from regression of X_t on W:

$$\widehat{\boldsymbol{X}} = \boldsymbol{W} \left(\boldsymbol{W}' \boldsymbol{W}
ight)^{-1} \boldsymbol{W}' \boldsymbol{X} = \boldsymbol{P}_W \boldsymbol{X}$$

where $\boldsymbol{P}_W = \boldsymbol{W} \left(\boldsymbol{W}' \boldsymbol{W} \right)^{-1} \boldsymbol{W}'.$

Remark 3. In the context of simultaneous equation model, W is the matrix of exogenous variables, and \widehat{X} is the matrix of fitted values of endogenous (and exogenous) variables obtained from the reduced form.

- P_W is symmetric and idempotent.
- Regression y on fitted values \widehat{X} gives 2SLS estimator:

$$egin{aligned} \widetilde{m{b}} &= \left(\widehat{m{X}}'\widehat{m{X}}
ight)^{-1}\widehat{m{X}}'m{y} = \left(m{X}'m{P}_Wm{X}
ight)^{-1}m{X}'m{P}_Wm{y} \ &= \left(m{X}'m{W}\left(m{W}'m{W}
ight)^{-1}m{W}'m{X}
ight)^{-1}m{X}'m{W}\left(m{W}'m{W}
ight)^{-1}m{W}'m{y} \end{aligned}$$

Remark 4. Number of instrumental variables must be larger than the number of explanatory variables. In the context of simultaneous equation models this condition reduces to necessary condition for identification as $K \ge G_j + K_j - 1$ where G_j is the number of endogenous variables in the equation including dependent variable, K_j the number of exogenous variables, and K the total number of available instruments (exogenous variables).

- Hausman test for endogeneity of explanatory variables: we check whether it is necessary to use the *IV* method:
 - IV estimators and OLS estimators are consistent if explanatory variables are exogenous
 - only *IV* is consistent if some explanatory variables are endogenous,
- So: test for endogeneity just by testing the equality of estimators:

$$\sqrt{n} \left(b_{IV} - b_{OLS} \right) \xrightarrow{D} N \left(0, \boldsymbol{\Sigma}_{b_{IV} - b_{OLS}} \right)$$

• It is also possible to test the *overidentifing* restrictions in the equation and the structural model. The test is called the Sargan test

Two Stage Least Squares (2*SLS***) - multiple equation** approach)

- Equations of the structural model cannot be estimated with *OLS* because of the (endogeneity/simultaneity) problem
- Consistent estimates can be obtained in this case with 2SLS
- Instrumental variables: all exogenous variables in the model
- Necessary condition for feasibility of the 2*SLS*: the number of instruments larger or equal to number explanatory variables
- It is equivalent to the identification condition!

- If the equation of the model is identified it can be estimated with 2SLS
- Two stages of estimation with 2SLS
- Calculate fitted values from regression of endogenous variable on the instruments (exogenous variables) - these fitted values can be obtained from reduced form
- 2. Calculate 2SLS regression for each equation of the structural form (endogenous variables are replaced with the fitted values calculated at the first stage)
- Observations for j equation of the structural form can be written as

$$oldsymbol{y}_j = oldsymbol{Z}_joldsymbol{eta}_j + oldsymbol{u}_j$$

where Z_j is the vector of endo and exogenous explanatory variables in j equation.

• Then all the observations for all the equations in the model can be stacked into

$$\left[egin{array}{c} oldsymbol{y}_1\ oldsymbol{y}_2\ dots\ oldsymbol{y}_G\end{array}
ight] = \left[egin{array}{cccc} oldsymbol{Z}_1 & oldsymbol{0} & \cdots & oldsymbol{0} & oldsymbol{0}$$

• Which can also be written as standard linear model:

$$\overline{oldsymbol{y}}=\overline{oldsymbol{Z}}\,\overline{oldsymbol{eta}}+\overline{oldsymbol{u}}$$

• Fitted values \widehat{Z}_j from the regression of Z_j on the exogenous variables X

are equal to

$$\widehat{\boldsymbol{Z}}_{j} = \boldsymbol{X}\widehat{\boldsymbol{\Pi}}_{j} = \boldsymbol{X}\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\boldsymbol{X}'\boldsymbol{Z}_{j} = \boldsymbol{P}_{\boldsymbol{X}}\boldsymbol{Z}_{j}.$$

• And 2SLS estimator for all the equations can be written as standard 2SLS estimator for stacked model

$$\boldsymbol{b}_{2MNK} = \left(\widehat{\boldsymbol{Z}}'\widehat{\boldsymbol{Z}}\right)^{-1}\widehat{\boldsymbol{Z}}'\overline{\boldsymbol{y}}$$

where

$$\widehat{\overline{oldsymbol{Z}}} = \left[egin{array}{ccc} \widehat{oldsymbol{Z}}_1 & \cdots & oldsymbol{0} \ & \ddots & \ oldsymbol{0} & & \widehat{oldsymbol{Z}}_G \end{array}
ight]$$

• 2SLS estimator is inefficient because they when estimating i equation

we are not using the information related to restrictions imposed on other equations

- On the other hand with this method it is possible to estimate one equation without estimating or even specifying the other equations - it suffices to specify which are the endogenous and exogenous variables (single equation approach)
- Estimation methods based on such limited information are called *Limited information* methods

Example 5. (demand and supply - original overidentified model) - 2*SLS* estimation. Demand equation

$$Q_D = \boldsymbol{\alpha}_0 + \boldsymbol{\alpha}_1 P + \boldsymbol{\alpha}_2 Y + u_1$$

is estimated wit IV methods with instruments $1, Y, P_M$. Similarly supply

equation

$$Q_S = \boldsymbol{\beta}_1 P + \boldsymbol{\beta}_2 P_M + u_2$$

is estimated with the use of instruments $1, Y, P_M$. In second equation we have more instruments than needed (equation is overidentified).