Advanced Econometrics University of Warsaw

Jerzy Mycielski

Doctoral School of Social Sciences, 2024

Jerzy Mycielski Advanced Econometrics

Course information

- Prerequisites: probability, statistics, basic econometrics (regression analysis)
- Office hours: Tuesday 17.00-18.30 room 304 or online upon email request
- Requirements for passing the course:
 - written final exam
- Textbooks:
 - probability: B. Hansen (2022b). Probability and Statistics for Economists. Princeton University Press. ISBN: 9780691235943
 - econometrics: B. Hansen (2022a). *Econometrics*. Princeton University Press. ISBN: 9780691235899
 - Bayesian econometrics: G. Koop (2003). *Bayesian Econometrics*. Wiley. ISBN: 9780470845677
 - Data sets and codes for examples included in textbooks: https://users.ssc.wisc.edu/~bhansen/econometrics/

Econometric packages

- STATA:
 - not free, menu-driven, command-line, programming
 - available in computer labs and also you can obtain one year student license in the IT department
 - documentation with examples: https://www.stata.com/ bookstore/choice-models-reference-manual/
 - video tutorials:

https://www.stata.com/links/video-tutorials/

- Gretl
 - free, menu-driven
- R:
 - free, command line, programming
 - useful in spatial econometrics and in machine learning

TABLE 4 Percent Distributions of Methodology of Published Articles, 1963–2011 *								
		Type of study						
Year		Theory	Theory with simulation	Empirical: borrowed data	Empirical: own data	Experiment		
1963		50.7	1.5	39.1	8.7	0		
1973		54.6	4.2	37.0	4.2	0		
1983		57.6	4.0	35.2	2.4	0.8		
1993		32.4	7.3	47.8	8.8	3.7		
2003		28.9	11.1	38.5	17.8	3.7		
2011		19.1	8.8	29.9	34.0	8.2		

* A type could not be assigned to seventeen of the articles published in 1963.

Source: Hamermesh (2013)

▲ □ ▶ ▲ □ ▶ ▲

Trends in economic research

Figure 4. Weighted Fraction Empirical by Field

Figure 5. Publications by Style

Source: Angrist et al. (2017)

Trends in economic research

Source: Angrist et al. (2017)

Objectives of empirical studies

- Why does modern economics rely so much on empirical research?
- Economic theory only provides qualitative guidance about the nature of relationships between variables.
- There are a number of cases where quantitative estimates are very important:
 - estimation of causal effect: policy analysis, evaluation studies
 - empirical verification of economic theory: statistical inference
 - forecasting

Example

What is the influence of the education on productivity?

Example

Is the supply of money money neutral in long-term?

Example

What will be the growth of GDP in the next quarter?

Causal relationship

- I_0 control group, Y_0 outcome if $i \in I_0$
- I_1 exposed group, Y_1 outcome if $i \in I_1$
- $D \in \{0,1\}$
 - D = 0 unit is not exposed
 - D = 1 unit is exposed
- We observe Y

$$Y = DY_1 + (1-D) Y_0$$

• Every unit has the observed effect and counterfactual effect

	<i>I</i> ₀	I_1
D = 0	Y_0	Y_1
D = 1	Y_0	Y_1

• We are interested in causal effect

$$(Y_1 | D = 1) - (Y_1 | D = 0)$$

Causal relationship

- The outcome of the exposure for the control group $(Y_1 | D = 0)$ cannot be observed!
- Generally speaking $(Y_1|D=0) \neq (Y_0|D=0)$.
- Therefore it is never possible to observe causal effect directly!
- The value of ($Y_1 | D = 0$) is known as counterfactual effect.
- Inferences about causal relationships are always indirect and based on a number of assumptions (so called hidden conditionals).
- Note, for example, that the way the analysis is carried out implies that we know a priori what is cause (D) and what is effect (Y)
- Standard interpretation of the causal effect assumes that exposure may be applied (*D* is manipulable).

Confounding variables.

- A causal variable (explanatory variable of interest)
- *B* outcome (dependent variable)
- *C* confounder: variable which influences both the causal variable and the outcome
- Notice that even if there is no causal relationship between A and B the influence of C can make them to co-move (A and B are correlated)
- Therefore correlation does not imply causality!

Confounding variables.

æ

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Control variables and ceteris paribus.

э

Mediators and colliders, Directed Acyclic Graph (DAG)

- To correctly measure causal effect of A on B we have to take into account the influence C and E but D can be ignored
- Notice that this diagram is acyclic, you cannot find the path along arrows from A to other nodes and then back to A
- This property implies that we are not considering cases of bidirectional causality (A causes B, B causes A)

- In the case of relationships between economic variables (especially macroeconomic) ones, bidirectional causality is not exceptional
- Notice that in the specific case of Keynesian the correlation between Y and C variables can be attributed partly explained by the way GDP is defined
- When explanatory causal variable depend on outcome variable we say that the simultaneity problem is present

Bibliography

Angrist, Joshua et al. (May 2017). "Economic Research Evolves: Fields and Styles". In: American Economic Review 107.5, pp. 293–97. DOI: 10.1257/aer.p20171117. URL: https:

//www.aeaweb.org/articles?id=10.1257/aer.p20171117.

 Hamermesh, Daniel S. (Mar. 2013). "Six Decades of Top Economics Publishing: Who and How?" In: Journal of Economic Literature 51.1, pp. 162–72. DOI: 10.1257/jel.51.1.162. URL: https:

//www.aeaweb.org/articles?id=10.1257/jel.51.1.162.

- Hansen, B. (2022a). *Econometrics*. Princeton University Press. ISBN: 9780691235899.
- (2022b). Probability and Statistics for Economists. Princeton University Press. ISBN: 9780691235943.
- Koop, G. (2003). *Bayesian Econometrics*. Wiley. ISBN: 9780470845677.