Linear projections

- The linear projection is defined as follows

$$
\mathrm{L}\left(y \mid 1, x_{1}, \ldots, x_{K}\right)=\mathrm{L}(y \mid 1, \boldsymbol{x})=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\ldots+\boldsymbol{\beta}_{K} x_{K}=\boldsymbol{\beta}_{0}+\boldsymbol{x} \boldsymbol{\beta}
$$

and β is defined as

$$
\boldsymbol{\beta}=[\operatorname{Var}(\boldsymbol{x})]^{-1} \operatorname{Cov}(\boldsymbol{x}, y)
$$

$\boldsymbol{\beta}_{0}=\mathrm{E}(y)-\mathrm{E}(\boldsymbol{x}) \boldsymbol{\beta}$

- We can always write

$$
y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\ldots+\boldsymbol{\beta}_{K} x_{K}+u
$$

and from definition of linear projection $\mathrm{E}(u)=0, \operatorname{Cov}\left(x_{j}, u\right)=0, j=$ $1, \ldots, N$

- It can be shown that linear projection is minimum mean square error linear predictor of y

$$
\min _{b_{0}, \boldsymbol{b}} \mathrm{E}\left[y-b_{0}-\boldsymbol{x} \boldsymbol{b}\right]^{2}
$$

- Iteration property

$$
\mathrm{L}(y \mid 1, \boldsymbol{x})=\mathrm{L}(\mathrm{~L}(y \mid 1, \boldsymbol{x}, \boldsymbol{z}) \mid \boldsymbol{x})
$$

- Also

$$
\mathrm{L}(y \mid 1, \boldsymbol{x})=\mathrm{L}(\mathrm{E}(y \mid 1, \boldsymbol{x}, \boldsymbol{z}) \mid \boldsymbol{x})
$$

Endogeneity problem

- Explanatory variable x_{j} is said to be endogenous if $\mathrm{E}\left(u \mid x_{j}\right) \neq 0$
- Endogeneity problem arises because:
- Omitted variable problem

$$
\mathrm{E}(u \mid \boldsymbol{x}, q) \neq \mathrm{E}(u \mid \boldsymbol{x})
$$

* In such a case model in error form is:

$$
y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\ldots+\boldsymbol{\beta}_{K} x_{K}+\boldsymbol{\beta}_{q} q+u
$$

* if q is omitted from regression part then it has to be included in error term

$$
u^{*}=\boldsymbol{\beta}_{q} q+u
$$

* But: if q and x_{j} are correlated than x_{j} and u^{*} are correlated and x_{j} is endogenous
- Measurement error. If instead of x_{j} we approximate value x_{j}^{*}, than measurement error will become part of u and u can become correlated with x_{j}^{*}
- Simultaneity. Simultaneity arises if y influences (e.g. with feedback) one of the explanatory variables
- Sometimes the distinction between this three sources of endogeneity is not quite sharp

Omitted variable problem

- Model with additive omitted variable

$$
\mathrm{E}\left(y \mid x_{1}, x_{2}, \ldots, x_{K}, q\right)=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\ldots+\boldsymbol{\beta}_{K} x_{K}+\boldsymbol{\gamma} q
$$

where q is omitted variable

- We are interested in partial effects of x_{j} on y holding all other variables including q constant
- Model in error form

$$
y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\ldots+\boldsymbol{\beta}_{K} x_{K}+\boldsymbol{\gamma} q+v
$$

$$
\mathrm{E}\left(v \mid x_{1}, \ldots, x_{K}, q\right)=0
$$

- v - structural error
- Assume that $\mathrm{E}(q)=0$, this assumption only influences constant
- Remove v from model in error form

$$
\begin{aligned}
y & =\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\ldots+\boldsymbol{\beta}_{K} x_{K}+u \\
u & =\boldsymbol{\gamma} q+v
\end{aligned}
$$

- From $\mathrm{E}(q)=\mathrm{E}(v)=0$ we have $\mathrm{E}(u)=0$
- But: u is only uncorrelated with all x_{j} if q is uncorrelated with all x_{j}
- If q is correlated with one of x_{j} than we have endogeneity problem and by $O L S$ we cannot estimate consistently any of $\boldsymbol{\beta}_{j}$
- The asymptotic bias resulting from omitted variable problem is called omitted variable inconsistency or omitted variable bias
- Linear projection of q onto explanatory variables

$$
q=\boldsymbol{\delta}_{0}+\boldsymbol{\delta}_{1} x_{1}+\ldots+\boldsymbol{\delta}_{K} x_{K}+r
$$

- Substituting this equation into our model we obtain:

$$
y=\left(\boldsymbol{\beta}_{0}+\gamma \boldsymbol{\delta}_{0}\right)+\left(\boldsymbol{\beta}_{1}+\gamma \boldsymbol{\delta}_{1}\right) x_{1}+\ldots+\left(\boldsymbol{\beta}_{K}+\boldsymbol{\gamma} \boldsymbol{\delta}_{K}\right) x_{K}+v+\boldsymbol{\gamma} r
$$

- By definition of linear projection $\mathrm{E}(r)=0, \operatorname{Cov}\left(x_{j}, r\right)=0$ for $j=1, \ldots, N$
- The error $v+\gamma r$ has zero mean and is uncorrelated with all the regressors
- Therefore $O L S$ estimate $\operatorname{plim}\left(\widehat{\boldsymbol{\beta}}_{j}\right)=\boldsymbol{\beta}_{j}+\gamma \boldsymbol{\delta}_{j}$
- If we assume that q is correlated with only one variable, say x_{K} so that $\boldsymbol{\delta}_{j}=0$ for $j \neq K$ and from definition of linear projection

$$
\boldsymbol{\delta}_{K}=\frac{\operatorname{Cov}\left(x_{K}, q\right)}{\operatorname{Var}\left(x_{K}\right)}
$$

So

$$
\operatorname{plim} \widehat{\boldsymbol{\beta}}_{K}=\boldsymbol{\beta}_{K}+\gamma \frac{\operatorname{Cov}\left(x_{K}, q\right)}{\operatorname{Var}\left(x_{K}\right)}
$$

- This means that:
- $\boldsymbol{\gamma} \operatorname{Cov}\left(x_{K}, q\right)>0$ than bias of $\widehat{\boldsymbol{\beta}}_{K}$ is positive
- $\boldsymbol{\gamma} \operatorname{Cov}\left(x_{K}, q\right)<0$ than bias of $\widehat{\boldsymbol{\beta}}_{K}$ is negative

Example 1. (Wooldridge) Wage equation with unobserved ability

$$
\log (\text { wage })=\boldsymbol{\beta}_{1} \text { exper }+\boldsymbol{\beta}_{2} \text { exper }^{2}+\boldsymbol{\beta}_{3} \text { educ }+\boldsymbol{\gamma} \text { abil }+v
$$

if abil is only correlated with educ:

$$
\text { abil }=\boldsymbol{\delta}_{0}+\boldsymbol{\delta}_{3} e d u c+r
$$

and abil is omitted from the model, then estimated coefficient for educ is equal in the limit $\operatorname{plim}\left(\boldsymbol{\beta}_{3}\right)=\boldsymbol{\beta}_{3}+\gamma \boldsymbol{\delta}_{3}$. If $\boldsymbol{\delta}_{3}>0$ then the influence of education is overestimated.

Proxy variable solution for omitted variable

- The proxy variable should be
- redundant (ignorable)

$$
\mathrm{E}(y \mid \boldsymbol{x}, q, z)=\mathrm{E}(y \mid \boldsymbol{x}, q)
$$

- correlation between q and x_{1}, \ldots, x_{K} should be zero once the effect of z is removed out

$$
L\left(q \mid 1, x_{1}, \ldots, x_{K}, z\right)=L(q \mid z)
$$

This condition can also be expressed in error form

$$
q=\boldsymbol{\theta}_{0}+\boldsymbol{\theta}_{1} z+r
$$

by definition of linear projection $\mathrm{E}(r)=0, \operatorname{Cov}\left(x_{j}, r\right)=0$

- Now we can write

$$
y=\boldsymbol{\beta}_{0}+\boldsymbol{\gamma} \boldsymbol{\theta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\boldsymbol{\beta}_{2} x_{2}+\ldots+\boldsymbol{\beta}_{k} x_{K}+\boldsymbol{\gamma} \boldsymbol{\theta}_{1} z+(\boldsymbol{\gamma} r+v)
$$

- Under two assumptions made $(\gamma r+v)$ is uncorrelated with x_{j} for $j=$ $1, \ldots, N$
- Conditions of consistency of $O L S$ imply that β can be consistently estimated in this case
- Inperfect proxy

$$
q=\boldsymbol{\theta}_{0}+\boldsymbol{\rho}_{1} x_{1}+\ldots+\boldsymbol{\rho}_{K} x_{K}+\boldsymbol{\theta}_{1} z+r
$$

- This gives plim $\left(\widehat{\boldsymbol{\beta}}_{j}\right)=\boldsymbol{\beta}_{j}+\gamma \boldsymbol{\rho}_{j}$
- We may hope that the bias is much smaller than $\boldsymbol{\beta}_{j}$
- Models with interactions with unobservables

$$
y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\boldsymbol{\beta}_{2} x_{2}+\ldots+\boldsymbol{\beta}_{K} x_{K}+\boldsymbol{\gamma}_{1} q+\boldsymbol{\gamma}_{2} x_{K} q+v
$$

- Partial effect of x_{K}

$$
\frac{\partial \mathrm{E}(y \mid \boldsymbol{x}, q)}{\partial x_{K}}=\boldsymbol{\beta}_{K}+\boldsymbol{\gamma}_{2} q
$$

- We cannot estimate the partial effect as q is not observable
- Assuming that $\mathrm{E}(q)=0$ we can however estimate the average partial effect

$$
\mathrm{E}\left(\boldsymbol{\beta}_{K}+\boldsymbol{\gamma}_{2} q\right)=\boldsymbol{\beta}_{K}
$$

or for binary variable

$$
\mathrm{E}\left(y \mid x_{1}, \ldots, x_{K-1}, 1, q\right)-\mathrm{E}\left(y \mid x_{1}, \ldots, x_{K-1}, 0, q\right)=\boldsymbol{\beta}_{K}
$$

- If $\mathrm{E}(q \mid \boldsymbol{x})=0$ than we can estimate this with $O L S$
- In the case of using proxy

$$
\mathrm{E}(q \mid \boldsymbol{x}, z)=\boldsymbol{\theta}_{1} z+r
$$

- Estimated equation

$$
\begin{aligned}
\mathrm{E}(y \mid \boldsymbol{x}, z)= & \boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\boldsymbol{\beta}_{2} x_{2}+\ldots+\boldsymbol{\beta}_{K} x_{K} \\
& +\boldsymbol{\gamma}_{1} \boldsymbol{\theta}_{1} z+\boldsymbol{\gamma}_{2} x_{K} \boldsymbol{\theta}_{1} z+\boldsymbol{\gamma}_{1} r+\boldsymbol{\gamma}_{2} x_{K} r+v
\end{aligned}
$$

- The result of estimation will be correct if proxy variable has expected value equal to zero
- If proxy variable has mean significantly different from zero then we may demean it to have the zero mean condition fulfilled

Example 2. (Wooldridge) Using IQ as proxy for ability (Blackburn and Neumark 1992)

$$
\begin{aligned}
\log (\text { wage })= & \boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} \text { exper }+\boldsymbol{\beta}_{2} \text { tenure }+\boldsymbol{\beta}_{3} \text { married } \\
& +\boldsymbol{\beta}_{4} \text { south }+\boldsymbol{\beta}_{5} \text { urban }+\boldsymbol{\beta}_{6} \text { black }+\boldsymbol{\beta}_{7} \text { educ }+\boldsymbol{\gamma} I Q+v
\end{aligned}
$$

Estimated coefficient for education: $\boldsymbol{\beta}_{7}=.065$ and with IQ included $\boldsymbol{\beta}_{7}=$.054. Indeed it seems that coefficient for education overestimated.

Instrumental Variable Estimator (IV)

- Linear model

$$
\begin{gather*}
y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+\boldsymbol{\beta}_{2} x_{2}+\ldots+\boldsymbol{\beta}_{K} x_{K}+u \tag{1}\\
\mathrm{E}(u)=0, \operatorname{Cov}\left(x_{j}, u\right)=0, j=1,2, \ldots, K-1
\end{gather*}
$$

- x_{1}, \ldots, x_{K-1} are uncorrelated with u but x_{K} is correlated with u (x_{K} is endogenous)
- $O L S$ estimator of the parameters is inconsistent for all the parameters $\boldsymbol{\beta}_{j}$ for $j=1, \ldots, K$
- The method of instrumental variables gives the estimation technique which solves this problem
- Instrumental variable estimator (IV)
- We need an observable variable z_{1}, not included in regression (redundant) which satisfies:

1. In uncorrelated with the error therm u

$$
\operatorname{Cov}\left(z_{1}, u\right)=0
$$

2. Coefficient on z_{1} in linear projection of x_{K} on $x_{1}, \ldots, x_{K}, z_{1}$ is not equal to zero

$$
\begin{gather*}
x_{K}=\boldsymbol{\delta}_{0}+\boldsymbol{\delta}_{1} x_{1}+\ldots+\boldsymbol{\delta}_{K-1} x_{K-1}+\boldsymbol{\theta}_{1} z_{1}+r_{K} \tag{2}\\
\boldsymbol{\theta}_{1} \neq 0
\end{gather*}
$$

- The second condition can also be formulated as the requirement that z_{1} is partially correlated with x_{K}
- z_{1} satisfying these two conditions is called instrumental variable (instrument) for x_{K}
- Equation (2) is called reduced form equation for endogenous variable x_{K}
- Equation (1) can be rewritten as

$$
y=\boldsymbol{x} \boldsymbol{\beta}+u
$$

- The vector of all exogenous (uncorrelated with u) variables is

$$
z=\left(1, x_{1}, \ldots, x_{K-1}, z_{1}\right)
$$

- From assumptions

$$
\mathrm{E}\left(\boldsymbol{z}^{\prime} u\right)=0
$$

- Multiply (2), by z^{\prime} and take expectations

$$
\mathrm{E}\left(\boldsymbol{z}^{\prime} y\right)=\mathrm{E}\left(\boldsymbol{z}^{\prime} \boldsymbol{x} \boldsymbol{\beta}\right)+\underbrace{\mathrm{E}\left(\boldsymbol{z}^{\prime} u\right)}_{0}
$$

- If $\operatorname{Rank}\left[\mathrm{E}\left(\boldsymbol{z}^{\prime} \boldsymbol{z}\right)\right]=K$ (this condition is satisfied if $\boldsymbol{\theta}_{1} \neq 0$) then

$$
\boldsymbol{\beta}=\left[\mathrm{E}\left(\boldsymbol{z}^{\prime} \boldsymbol{x}\right)\right]^{-1} \mathrm{E}\left(\boldsymbol{z}^{\prime} y\right)
$$

- Condition that $\boldsymbol{\theta}_{1} \neq 0$ can be tested by checking whether z_{1} is significant in reduced form equation
- Parameter $\boldsymbol{\beta}$ is said to be identified if it can be expressed as a function of expectations of the data
- Using analogy principle (replacing expectations with data means) we obtain:

$$
\widehat{\boldsymbol{\beta}}=\left(N^{-1} \sum_{i=1}^{N} \boldsymbol{z}_{i}^{\prime} \boldsymbol{x}_{i}\right)^{-1}\left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}^{\prime} y_{i}\right)=\left(\boldsymbol{Z}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{Z}^{\prime} \boldsymbol{y}
$$

Example 3. (Wooldridge) Instrumental Variables for education in wage equation

$$
\log (\text { wage })=\boldsymbol{\beta}_{0}+\text { exper }+\boldsymbol{\beta}_{2} \text { exper }^{2}+\boldsymbol{\beta}_{3} \text { educ }+u
$$

As an instrument for child education mother education can be used: it is correlated with child education but it should not directly influence wages.

Problem: mother education can be correlated with other omitted factors in wage education.

- Angrist and Kruger (1991) instrument for education: quarter of birth
- Card (1995): instrument for education: college proximity
- Natural experiment instruments: Angrist (1990) effect of veteran status on wages - instrument: draft lottery number

2 Step Least Squares (2SLS)

- Model:

$$
y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+, \ldots, \boldsymbol{\beta}_{K-1} x_{K-1}+\boldsymbol{\beta}_{K} x_{K}+u
$$

- For simplicity we assume that only x_{K} is endogenous
- More then one instrument for endogenous variable x_{K}
- M instruments, z_{1}, \ldots, z_{K} such that forn any h

$$
\operatorname{Cov}\left(z_{h}, u\right)=0
$$

- Vector of exogenous variables contains exogenous explanatory and instrumental variables:

$$
\boldsymbol{z}=\left(x_{1}, \ldots, x_{K-1}, z_{1}, \ldots, z_{M}\right)
$$

- It is possible to find M instrumental variable ($I V$) estimators of parameter β which are consistent
- Which estimator we should use?
- The most efficient one is the one using the instrument being the linear combination of z most highly correlated with x_{K}
- The most highly correlated with x_{K} combination of z is the linear projection of x_{K} on z.
- Reduced form for x_{K} is

$$
x_{K}=\boldsymbol{\delta}_{0}+\boldsymbol{\delta}_{1} x_{1}+\ldots+\boldsymbol{\delta}_{K-1} x_{K-1}+\boldsymbol{\theta}_{1} z_{1}+\ldots+\boldsymbol{\theta}_{M} z_{M}+r_{K}
$$

- New instrument is:

$$
x_{K}^{*}=\boldsymbol{\delta}_{0}+\boldsymbol{\delta}_{1} x_{1}+\ldots+\boldsymbol{\delta}_{K-1} x_{K-1}+\boldsymbol{\theta}_{1} z_{1}+\ldots+\boldsymbol{\theta}_{M} z_{M}
$$

- As the linear combination of exogenous variables it is uncorrelated with u
- $\boldsymbol{\delta}_{i}$ and $\boldsymbol{\theta}_{j}$ can easily estimated as $O L S$ gives the consistent estimators of coefficients in linear projection

$$
\widehat{x}_{i K}^{*}=\widehat{\boldsymbol{\delta}}_{0}+\widehat{\boldsymbol{\delta}}_{1} x_{i 1}+\ldots+\widehat{\boldsymbol{\delta}}_{K-1} x_{i K-1}+\widehat{\boldsymbol{\theta}}_{1} z_{i 1}+\ldots+\widehat{\boldsymbol{\theta}}_{M} z_{i M}
$$

where $\widehat{\boldsymbol{\theta}}=\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{\prime} \boldsymbol{X}$.

- Using $\widehat{x}_{i K}^{*}$ as instrument in $I V$ we get

$$
\widehat{\boldsymbol{\beta}}=\left(\sum_{i=1}^{N} \widehat{\boldsymbol{x}}_{i}^{\prime} \boldsymbol{x}_{i}\right)^{-1}\left(\sum_{i=1}^{N} \widehat{\boldsymbol{x}}_{i}^{\prime} y_{i}\right)=\left(\widehat{\boldsymbol{X}}^{\prime} \boldsymbol{X}\right)^{-1} \widehat{\boldsymbol{X}}^{\prime} \boldsymbol{Y}
$$

- Notice that $\widehat{\boldsymbol{X}}=\boldsymbol{Z}^{\prime} \widehat{\boldsymbol{\theta}}=\boldsymbol{Z}\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{\prime} \boldsymbol{X}=\boldsymbol{P}_{X} \boldsymbol{X}$, where projection matrix $\boldsymbol{P}_{X}=\boldsymbol{Z}\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}\right)^{-1} \boldsymbol{Z}^{\prime}$ is symmetric $\left(\boldsymbol{P}_{X}^{\prime}=\boldsymbol{P}_{X}\right)$ and idempotent $\left(\boldsymbol{P}_{X} \boldsymbol{P}_{X}=\right.$ $\left.\boldsymbol{P}_{X}\right)$
- Then

$$
\begin{aligned}
\left(\widehat{\boldsymbol{X}}^{\prime} \boldsymbol{X}\right)^{-1} \widehat{\boldsymbol{X}}^{\prime} \boldsymbol{Y} & =\left(\boldsymbol{X}^{\prime} P_{X}^{\prime} \boldsymbol{X}\right)^{-1} \widehat{\boldsymbol{X}}^{\prime} \boldsymbol{Y} \\
& =\left(\boldsymbol{X}^{\prime} P_{X}^{\prime} P_{X} \boldsymbol{X}\right)^{-1} \widehat{\boldsymbol{X}}^{\prime} \boldsymbol{Y} \\
& =\left(\widehat{\boldsymbol{X}}^{\prime} \widehat{\boldsymbol{X}}\right)^{-1} \widehat{\boldsymbol{X}}^{\prime} \boldsymbol{Y}
\end{aligned}
$$

- Two Stage Least Squares:

1. Obtain fitted values \widehat{x}_{K} from regression of x_{K} on x_{1}, \ldots, x_{K-1} and z_{1}, \ldots, z_{K}
2. Run regression of y_{i} on $x_{1}, \ldots, x_{K-1}, \widehat{x}_{K}$

- Instruments have to be correlated wit endogenous explanatory variable: at least one of $\boldsymbol{\theta}_{j} \neq 0$
- This assumption can be tested by testing hipothesis

$$
H_{0}: \boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{2} \ldots=\boldsymbol{\theta}_{M}
$$

- General case:
- G number of endogenous explanatory variables
- L_{X} - number of exogenous explanatory variables
- L_{Z} - number of instruments which are not explanatory variables
- $L=L_{Z}+L_{X}$ total number of instruments (including L_{X} exogenous explanatory variables)
- K - total number of explanatory variables
- Assumptions needed for consistency of $2 S L S$:

1. $\mathrm{E}\left(\boldsymbol{z}^{\prime} \boldsymbol{u}\right)=0$
2. Rank conditions:
(a) $\operatorname{Rank}\left[\mathrm{E}\left(\boldsymbol{z}^{\prime} \boldsymbol{z}\right)\right]=L$
(b) $\operatorname{Rank}\left[\mathrm{E}\left(\boldsymbol{z}^{\prime} \boldsymbol{x}\right)\right]=K$

- Condition (2a) is technical: no linear dependence between instruments
- Condition (2b) is important.
- Total number of explanatory variables $K=G+L_{X}$
- Necessary condition for condition (2b) is $L \geq K \Longrightarrow L_{Z} \geq G$ - number of instruments has to be equal or bigger then the number of endogenous variables in the regression equation.
- Asymptotic distribution of $\sqrt{N}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ is normal if $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \boldsymbol{z}_{i} u_{i}$ which can be proven from central limit theorem
- If the homoscedasticity assumption is true: $\mathrm{E}\left(u^{2} \boldsymbol{z}^{\prime} \boldsymbol{z}\right)=\boldsymbol{\sigma}^{2} \mathrm{E}\left(\boldsymbol{z}^{\prime} \boldsymbol{z}\right)$, where $\boldsymbol{\sigma}^{2}=\mathrm{E}\left(u^{2}\right)$ then asymptotic variance of $\sqrt{N}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})$ is

$$
\operatorname{Avar}(\widehat{\boldsymbol{\beta}})=\boldsymbol{\sigma}^{2}\left\{\mathrm{E}\left(\boldsymbol{x}^{\prime} \boldsymbol{z}\right)\left[\mathrm{E}\left(\boldsymbol{z}^{\prime} \boldsymbol{z}\right)\right]^{-1} \mathrm{E}\left(\boldsymbol{z}^{\prime} \boldsymbol{x}\right)\right\}
$$

- If we define $2 S L S$ residuals as

$$
\widehat{u}_{i}=y_{i}-\boldsymbol{x}_{i} \widehat{\boldsymbol{\beta}}
$$

then the unbiased estimator of σ^{2} is

$$
\widehat{\boldsymbol{\sigma}}^{2}=(N-K)^{-1} \sum_{i=1}^{N} \widehat{u}_{i}^{2}
$$

- The estimator of asymptotic variance is then

$$
\widehat{\boldsymbol{\sigma}}^{2}\left(\sum_{i=1}^{N} \widehat{\boldsymbol{x}}_{i}^{\prime} \widehat{\boldsymbol{x}}_{i}\right)^{-1}=\widehat{\boldsymbol{\sigma}}^{2}\left(\widehat{\boldsymbol{X}}^{\prime} \widehat{\boldsymbol{X}}\right)^{-1}
$$

Example 4. (Wooldridge) Instruments for educ is motheduc, fatheduc, huseeduc. Reduced form equation for educ
educ $=\delta_{0}+\delta_{1}$ exper $+\boldsymbol{\delta}_{2}$ exper $^{2}+\boldsymbol{\theta}_{1}$ motheduc $+\boldsymbol{\theta}_{2}$ fathed $+\boldsymbol{\theta}_{3}$ huseduc $+r$
t-statistics for all $\boldsymbol{\theta}_{i}$ significant
Structural equation

OLS coefficient for education .107.

- For testing hypothesis we may use the Wald statistics or use the sum of squares

$$
F=\frac{\left(S S R_{R}-S S R\right) / g}{S R R /(N-K)}
$$

where $S S R$ is a sum of $2 S L S$ residuals in unrestricted model and $S S R$ is a sum of $2 S L S$ residuals in restricted model

- Beware that $S S R=\sum_{i=1}^{N} \widehat{u}_{i}^{2}$ and $\widehat{u}_{i}=y_{i}-\boldsymbol{x}_{i} \widehat{\boldsymbol{\beta}}\left(\operatorname{not} \widehat{u}_{i}=y_{i}-\widehat{\boldsymbol{x}}_{i} \widehat{\boldsymbol{\beta}}\right)$
- We can also use the $L M$ statistics for testing
- The heteroscedasticity robust variance matrix and test statistics can be computed

Possible Pitfalls using $2 S L S$

- The weak correlation between endogenous variable on instrument (x and z)
- It can be shown that for $y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+u$

$$
\operatorname{plim} \widehat{\boldsymbol{\beta}}=\boldsymbol{\beta}+\left(\boldsymbol{\sigma}_{u} / \boldsymbol{\sigma}_{x_{1}}\right)\left(\boldsymbol{\rho}_{z_{1} u} / \boldsymbol{\rho}_{z_{1} x_{1}}\right)
$$

- If correlation between z_{1} and x_{1} is small then even very small correlation between z_{1} and u can result in large asymptotic bias
- It is also the case that if instruments are poor (weakly partially correlated with endogenous explanatory variable x_{K}) that standard deviation of estimator $\boldsymbol{\beta}_{K}$ will be large

Example 5. (Wooldridge) Bound, Jaeger and Baker (1995) have shown that Angrist and Kruger (1991) 2SLS estimator using instruments for education based on the date of birth behave poorly even for sample size of 500,000 . Reason: very weak correlation between the date of birth and the number of years of education.

$I V$ solution to omitted variable problem

- Model

$$
y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+, \ldots, \boldsymbol{\beta}_{K-1} x_{K-1}+\boldsymbol{\beta}_{K} x_{K}+\boldsymbol{\gamma} q+\boldsymbol{v}
$$

- Explanatory variable q unobserved
- Instrumental variable solution:
- Find instruments

1. redundant in structural equation
2. uncorrelated with omitted variable q
3. correlated with endogenous variable (with a variable correlated with omitted variable)

- Use $I V$ or $2 S L S$ for estimating model

$$
y=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} x_{1}+, \ldots, \boldsymbol{\beta}_{K-1} x_{K-1}+\boldsymbol{\beta}_{K} x_{K}+u
$$

where $u=\gamma q+\boldsymbol{v}$

- Indicator variables solutionn:

1. Find 2 variables redundant in structural equation $\left(\operatorname{Cov}\left(q_{1}, \boldsymbol{v}\right)=\right.$ $\left.\operatorname{Cov}\left(q_{2}, \boldsymbol{v}\right)=0\right)$ but correlated with q

$$
\begin{aligned}
& q_{1}=\boldsymbol{\delta}_{0}+\boldsymbol{\delta}_{1} q+a_{1} \\
& q_{2}=\boldsymbol{\rho}_{0}+\boldsymbol{\rho}_{1} q+a_{2}
\end{aligned}
$$

where

$$
\operatorname{Cov}\left(q, a_{1}\right)=\operatorname{Cov}\left(q, a_{2}\right)=\operatorname{Cov}\left(\boldsymbol{x}, a_{1}\right)=\operatorname{Cov}\left(\boldsymbol{x}, a_{2}\right)=\operatorname{Cov}\left(a_{1}, a_{2}\right)=0
$$

2. Rearranging we get $q=-\frac{\boldsymbol{\delta}_{0}}{\boldsymbol{\delta}_{1}}+\frac{1}{\boldsymbol{\delta}_{1}} q_{1}-\frac{a_{1}}{\boldsymbol{\delta}_{1}}=\gamma_{0}+\gamma_{1} q_{1}-\gamma_{1} a_{1}$ and plugging for q we obtain

$$
y=\boldsymbol{\alpha}_{0}+\boldsymbol{x} \boldsymbol{\beta}+\gamma_{1} q_{1}+\left(\boldsymbol{v}-\boldsymbol{\gamma}_{1} a_{1}\right)
$$

where $\gamma_{1}=\frac{\gamma}{\delta_{1}}$ but still q_{1} is correlated with a_{1}
3. From assumptions q_{1} and a_{1} are correlated but q_{2} is not correlated with a_{1} as a_{1} is not correlated with q and a_{2}. But q_{1} and q_{2} are correlated with each other. Then, indicator q_{2} may be used as instrument in estimation of the last equation.

Example 6. (Wooldridge) IQ and KKW (Knowledge of the Working World test score) as Indicators of Ability. $I Q=\delta_{0}+\delta_{1} a b i l+a_{1}, K K W=\rho_{0}+\rho_{1} a b i l+a_{2}$.

We add IQ to equation and use KKW as instrument

$$
\begin{aligned}
\log (\text { wage })= & \underset{(0.33)}{4.59}+\underset{(.003)}{.014} \text { exper }+\underset{(.003)}{.010} \text { tenure }+\underset{(.042)}{.201} \text { married } \\
& +\underset{(.031)}{.051} \text { south }+\underset{(.028)}{.177} \text { urban }+\underset{(.074)}{.023 \text { black }+\underset{(.017)}{.025 ~ e d u c ~}+\underset{(.005)}{.013} \mathrm{IQ}}
\end{aligned}
$$

return to education only 2.5% and not significant.

