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Scobit: An Alternative Estimator
to Logit and Probit*

Jonathan Nagler, University of California, Riverside

Logit and probit, the two most common techniques for estimation of models with a
dichotomous dependent variable, impose the assumption that individuals with a probability
of .5 of choosing either of two alternatives are most sensitive to changes in independent
variables. This assumption is imposed by the estimation technique because both the logistic
and normal density functions are symmetric about zero. Rather than let methodology dic-
tate substantive assumptions, I propose an alternative distribution for the disturbances
to the normal or logistic distribution. The resulting estimator developed here, scobit
(or skewed-logit), is shown to be appropriate where individuals with any initial probability
of choosing either of two alternatives are most sensitive to changes in independent variables.
I then demonstrate that voters with initial probability of voting of less than .5 are most
sensitive to changes in independent variables. And I examine whether individuals with low
levels of education or high levels of education are most sensitive to changes in voting laws
with respect to their probability of voting.

Introduction

Nonlinear models such as logit and probit have gained favor among
political scientists as ways to overcome the efficiency and specification
problems of ordinary least squares (OLS) when estimating models with
dichotomous dependent variables. Two features are inherent in such
models. First, the effects of changes in independent variables depend
upon the initial value of the dependent variable (i.e., of the probability
that the dependent variable takes on each value). Second, such models
are ‘‘interactive’’ in all of their variables: the effect of a change in any
independent variable upon the dependent variable will depend upon the
values of all of the other independent variables. These properties suggest
that care should be taken in the discovery of systematic differences in
sensitivity to stimuli across respondents (henceforth referred to as re-
spondent heterogeneity), or interactive effects between variables in the
model, since both these phenomena are assumed—and in fact imposed—
by the model specification.

*I would like to thank John Freeman, Simon Jackman, John Jackson, and reviewers
of this journal for helpful comments. Earlier versions of this paper were presented at the
annual meeting of the Political Methodology Society, Cambridge, July 1992, and the annual
meeting of the Midwest Political Science Association, Chicago, April 1992.
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In particular, probit and logit will tend to exaggerate effects of
changes in any independent variables for those individuals having a prob-
ability closest to one-half of choosing either of the two alternatives (i.e.,
for those individuals with P; = prob(Y; = 1) = .5). Imagine that persons
with a 50% likelihood of voting share a common trait: they are poorly
educated. Then when we examine changes in individuals’ likelihood of
voting caused by changes in some other explanatory variable, we shall
see an exaggerated change for poorly educated persons. Thus, we might
conclude that poorly educated persons are most sensitive to stimuli, when
in fact this is an assumption of the model. Such an observation has been
interpreted to indicate that poorly educated individuals have special prob-
lems dealing with voting laws (Wolfinger and Rosenstone 1980; for a
revision to this claim, see Nagler 1991).

Alternatively, imagine that one wishes to examine the effect of a
congressional challenger’s campaign spending on the likelihood of the
challenger’s partisans switching allegiance during the campaign versus
the effect of the challenger’s spending on the likelihood of the incum-
bents’ partisans switching allegiance during the campaign. Any estimates
of predicted change would be ‘‘contaminated’’ by the starting points of
the probabilities of switching (Jacobson 1990). Or in another campaign
setting, imagine testing whether campaign canvassing has larger effects
on poor persons or on rich persons. Presumably such questions are of
considerable importance to a campaign organization deciding how to allo-
cate its resources strategically. Yet probit or logit estimates would con-
front the same methodological problem in this case: any estimates of
change would depend upon initial probabilities of the respondent choos-
ing either option. And since the probability of choosing either option
is likely to be correlated with the individual characteristic of interest
(partisanship or income), then probit or logit are assuming an interactive
effect between the campaign activity and the individual characteristic.

In linear models of the form Y; = X;B, there are two common tech-
niques to test for interactive effects. First, a multiplicative interactive
term can be added between the individual characteristic of interest and
the independent variable of interest. Or, second, the data can be disaggre-
gated by the characteristic of interest and the coefficients of the variable
of interest can be compared across samples. Such tests are dependent
upon the fact that the marginal effect of x, upon Y (3Y/dx,), the change
in the dependent variable caused by a change in the independent variable,
is determined solely by B, the coefficient of interest. However, in non-
linear models, this is not the case: dP,/dx, is dependent upon both g, and
f(X;B), where fis the density function assumed for the disturbances. If
the density function assumed is wrong, then estimates of marginal effects
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and interactive effects will be wrong. Below I develop the standard frame-
work for the binary response model, then show that by choosing a set
of distributions for the disturbances dependent upon a parameter to be
estimated, rather than assuming a specific distribution, it is possible to
estimate the correct specification and hence correctly estimate marginal
and interactive effects.

The Binary Response Model

Following the usual procedure when dealing with dichotomous vari-
ables, assume that while we observe only the values of zero and one for
the variable Y, there is a latent, unobserved continuous variable Y* that
determines the value of Y.! Furthermore, assume that Y* can be specified
as follows:

YI* = X,B + U;, (1)
and that

;=1 if Y}>0
Y, = 0 otherwise,

where X represents a vector of random variables, and u represents a
random disturbance term. Now from equation (1):

P; = prob(X;B + u; > 0). 2
Rearranging terms,

P; = prob(u; > (- X;B)) 3)

=1 - F(-XB), @

where F is the cumulative density function of the variable u.
Now the marginal effect on P, for a change in X, is given by:

oP; _ d[l — (F(=X;B))]
a(X) a(Xy)
= f(=XiB) B«
Thus, the impact of changes in a variable X, on the likelihood of a particu-
lar individual choosing option number 1 will depend not only on B, (the
variable’s coefficient), but also on the value of X;B8, and in particular

f(—=X;B). Since aP/3(X,) will depend upon the choice of F, the true F
must be known in order to know the true impact of changes in any inde-

®)

ISee Maddala (1983) for a thorough treatment of limited dependent variables.
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pendent variable upon different individuals. Or, the shape of the true
F(u), and f(u), will depend upon which individuals are most sensitive to
changes in the independent variables.

If we assume that u is normally distributed as in the probit model,
or that F(u) = ®(u), then f(—X,;B) = &(—X;B), and f(—X;B) has a
maximum at X; = 0. This is precisely where ®(X;B) = .5, and hence
P, = .5. This implies that any given variable X, will have its greatest
effect on those individuals for which X8 is closest to 0, or for which P;
is closest to 0.5. Or if the previous statement about the sensitivity of P;
is correct, then F(u) = ®(u) is the correct distribution and probit is
the appropriate estimation technique. However, if individuals with initial
probability other than .5 are those most sensitive to change, then the
probit model would represent a misspecification and lead to biased infer-
ences about the marginal effect of changes of any independent variable.
In particular, it would invalidate inferences that certain individuals are
more sensitive to stimuli based solely on predicted probabilities derived
from probit estimates. And since logit is also based on a symmetric distri-
bution, the same criticism would apply to it as well.

We would like to move beyond the world described by Poincaré in
which ‘‘everyone believes the [normal] law of errors, the experimenters
because they think it is a mathematical theorem, the mathematicians be-
cause they think it is an empirical fact”’ (cf. Harvey 1981).2 The goal of
this research is to specify correctly the response curve so as to determine
precisely which individuals are most sensitive to change. Since we can
distinguish between individuals based on their initial probability to
choose an option (vote or not vote, for instance), this is equivalent to
finding the value of P; where sensitivity—dP,/d(X,)—is at a maximum.
In other words, the goal of this research is to allow the data to suggest
the most reasonable response curve, rather than assuming that the logit
or probit curves fit best. This is accomplished via maximum likelihood
estimation of an additional parameter, o, that modifies the response curve
so that the probability level at which independent variables have maxi-
mum impact on change in probability is not necessarily .5, but is instead
determined by the actual patterns observed in the data.

The Estimation Technique

The problem of determining an appropriate response curve is simpli-
fied if we consider f(z), where z; = X;B, X; is a vector of k independent
variables, and B is a vector of k£ parameters. For a given distribution the
question of interest is, at what value P* of P, is 9P;/dz at a maximum?

] found this wonderfully appropriate quote in King (1989).
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Or for a given distribution, at what probability level are individuals most
sensitive to stimuli? We would like to test a set of distributions, each
differing in P*, where z.,s; = F~'(P*) maximizes f(z). And we would
like to find an estimation technique to allow us to determine the correct
distribution from among this set. In other words, we would like to find a
set of distributions {F;, F,, F;, . . . ,} such that for every value of P*
in the interval (0, 1) there exists some F; such that z = Fj“(P*) maxi-
mizes f;(z). These distributions should be well behaved over the range
—o < X;B < ., The distribution within that set fitting the data best (i.e.,
the distribution most likely to generate the observed data by maximum
likelihood criteria) would be. our choice as the true distribution. Obvi-
ously insisting only that the set of distributions satisfy the above criteria
does not cover all possible distributions. However, it would give us a
distribution corresponding to any possible set of individuals—based on
their initial probability of choosing either alternative—being most sensi-
tive to changes in the independent variables. The alternative would be to
adopt a semiparametric estimation technique that would not assume any
functional form for the distribution (Héardle 1990). If data-gathering tech-
nology increased at the same speed as computing technology increased,
this would be feasible. However, it is unlikely that the typical political
science data set is up to the task of allowing for precise estimation this
way.

Now, by adding a parameter to the definition of the distribution, we
may attempt to describe a set of distributions with the above criteria.
The following distribution, one of several proposed by Burr (1942) and
referred to here as the Burr-10 distribution to distinguish it from the more
commonly used distribution associated with Burr’s name, is adopted:?

1

F@0 = a0 ©)
where a > 0. The Burr-10 distribution satisfies the condition that f(z) not
attain a maximum only when F(z) = .5, and it is defined for —» < z

< o, It remains to be shown that the Burr-10 distribution meets the cri-
teria set forth (i.e., that V P* € (0, 1) 3 a s.t. z = F; '(P*) maximizes
fi(z; )). The proof of the following proposition (Appendix A) shows that
this condition can be met by this set of distributions.

ProrosiTioN 1: For all P* € (0, 1), there exists o« > 0, s.t. z =
F; '(P*) maximizes fj(z; o), where F(z; o) = (1 + e™9)™°

3This distribution was given in equation (10) of Burr’s (1942) work.
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The Burr-10 distribution may thus be used to generate an alternative
estimator to probit or logit. This estimator is called the scobit estimator
here, or ‘‘skewed-logit’’ because it allows for a skewed response curve,
with a serving as a parameter to measure skewness.*

Other more common distributions fail this property (i.e., that V k €
(0, 1) 3 a s.t. P* = k). For the normal distribution, logistic distribution,
and extreme value distribution, it can be shown that f(z) can be defined
to within a constant scale factor as functions of F(z). Hence, for these
distributions, P* is invariant with respect to the choice of parameters.
For example, the density function for the extreme value distribution can
be expressed as a function of its distribution as follows:

f@) = (=1/B)log(F(2)) F(2). )

This means that 7, Will correspond to a unique F(z). By contrast, for
the Burr-10 distribution, we have:

f@) = a(F@~" = DEF@)FE@)"). ®

Hence, depending upon the value of the parameter o,z could corre-
spond to many (any, as I have shown) values of F(z).

With the addition of new parameters, some distributions could be
modified to offer the property in question. However, the Burr-10 distribu-
tion is also desirable because the logistic distribution is nested within it.
If we adopt the constraint that o = 1, then the Burr-10 distribution is the
logistic distribution. This nesting property allows for log-likelihood ratio
tests comparing scobit to logit; LL;,,/LL ., Will have a x? distribution
with one degree of freedom. Hence, throughout the paper, scobit esti-
mates are compared to logit rather than probit.’ This nesting property is
shared with an estimator proposed by Prentice (1976) for use in estimating
dose response curves. However, Prentice’s estimator requires fitting two
additional parameters to the data to describe the distribution, rather than
only one. Thus, using the Burr-10 distribution allows for a more elegant
test, since the estimate of only one parameter need be evaluated.

The Scobit Estimator

Figure 1 illustrates the relationship between the parameter a and
the value of P* that maximizes P; or that maximizes sensitivity of the

“The naming and spelling of ‘‘scobit’ are based on the preferences of the author;
‘‘skewed logit”” would be more in keeping with the conventions of the econometrics
literature.

See Aldrich and Nelson (1984, 42) for a comparison of logit and probit estimates.
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Figure 1. Probability Level Where Slope Is Maximized for Different Values
of the Parameter o
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respondent to changes in the independent variables. For o = .1, P,

achieves a maximum where P; = .2; for a = .2, P,~ achieves a maximum
where P; = .3. The curve flattens out as a increases, indicating that P*
reaches a limit as a — . The figure shows that this limit is approached
quite rapidly. Thus, if individuals with high initial probabilities of choos-
ing alternative 1 are most sensitive to stimulus, the parameter value o
should be high. If individuals with low initial probabilities of choosing
alternative 1 are most sensitive to stimulus, then the parameter value of
a should be low. In fact, for « = 1, P* = .5, and f(—z) is symmetric
about this. For values of a less than 1, respondents unlikely to choose
alternative 1 are most sensitive to stimuli. For values of a greater than 1,
respondents likely to choose alternative 1 are most sensitive to stimuli.
Figure 2.A compares the cumulative distribution for logit to the cu-
mulative distribution for scobit for values of a = .25, .75, 1.00 (logit),
1.25, and 4.00. Figure 2.B plots the density (slope) for scobit for the same
values of a against the associated probability value. As can be seen, the
slope takes on its maximum values at different probability levels de-
pending upon the value of «. Figure 2.A gives a good indication of how
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Figure 2.A. Cumulative Distribution for Scobit
[Y — Axis = 1 — F(-X;B)]

Probability (¥; = 1)
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Key:
Ao = .25
®a = .75
©a = 1 (logit)
Ba = 1.25
o =4

scobit works compared to logit. As the parameter o varies, the curve is
not uniformly shifted, but rather the shape of the curve changes: the
point where it is steepest varies. Figure 2.B indicates more directly the
relationship between P; and aP,/dZ. The apogee of each curve is the point
where dP;/dZ is at a maximum. The figure clearly shows how increasing
the value of a increases the probability level at which this apogee occurs.

Scobit versus Logit: Monte Carlo Results

Before proceeding to analyze actual data, I present Monte Carlo
experiments to illustrate: (1) how well scobit will behave in small samples
where the disturbances in the model are both symmetrically and asym-
metrically distributed and (2) how much scobit estimates will differ from
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Figure 2.B. Slope for Scobit at Different Values of o versus Probability Y = 1
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logit estimates when the disturbances are asymmetrically distributed.
Again, scobit estimates are compared to logit rather than probit because
logit is actually a constrained version of scobit: the constraint being that

a is fixed at the value 1.00.
Table 1 reports the results of 100 trials with both 500 and 2,000

observations per trial where the disturbance in the true model was logisti-
cally distributed. Variables Y* and Y were generated as follows:

Yl*= _10+2Xi+ui,
Y=1 if Y*>0
Y=0 if Y*=<0,

where u; was a random variable with logistic distribution, and X was a
random variable uniformly distributed between 0 and 10 so that E[Y*]



SCOBIT 239

Table 1. Monte Carlo Experiment No. 1
(Results of 100 Trials with Logistically Distributed Disturbance)

Logit Scobit
Std. Std.

True Mean Dev. Mean Dev.
N = 500
Bo —10.00 —10.28 1.39 —11.18 3.63
By 2.00 2.06 0.27 2.25 0.98
o 1.00 —_ —_ 1.48 1.32
LLF — - —78.91 —_ —78.34 —_
CorPred® 466.57 5.10 466.91 5.08
N = 2,000
Bo —10.00 -10.01 0.59 —10.03 0.77
B: 2.00 2.00 0.12 1.99 0.22
o 1.00 —_ —_ 1.10 0.31
LLF —_ —329.97 —_ —329.50 —_
CorPred 1,860.20 10.68 1,860.50 10.84

2CorPred is the number of correct predictions.

= 0 and E[Y] = .5. Logit and scobit estimates were computed for the
resulting data. The mean value of the estimate of the scobit skewness
parameter o over the 100 trials of sample size 500 was 1.48 (o, = 1.32)
and was 1.10 for the 100 trials of sample size 2,000 (¢, = 0.31). Thus,
with 2,000 observations, the skewness parameter of scobit was able to
cluster fairly tightly about the true value of 1.00; with only 500 observa-
tions, the estimate of skewness was very imprecise.5

The larger standard errors of the estimated scobit coefficients (’s)
versus the estimated logit coefficients suggest a price to pay in using
scobit. However, the scobit estimates are not intractable. Even with only
500 observations, the B’s are significantly different from 0, if not esti-
mated very precisely. The log-likelihood values and number of correct
predictions were virtually indistinguishable for both logit and scobit; the
average log-likelihood value was within .6 for both experiments. The
average scobit log-likelihood value was slightly lower, as would have to
be the case since scobit removes a constraint from the logit model.

%One possible reason for the difference between the estimated and true parameters in
the trials of sample size 500 is that some parameter estimates may simply be wrong; the
software may have converged on the wrong point. This would really have to be hand
checked for the extreme estimates.



240 Jonathan Nagler

The next question is, How does logit do versus scobit when the
disturbance term is not symmetric (i.e., what happens when scobit rather
than logit represents the true underlying model)? Table 2 reports the
results of 100 trials with both 500 and 2,000 observations per trial where
the disturbance in the true model was distributed as a Burr-10 random
variable, with o = .5. This corresponds to a case where P* = .42.
Variables Y* and Y were generated as follows:

Y¥ = —8.5+ 2X; + u,,
Y=1 if ¥Y*>0
Y=0 if Y*<0,

where u; was a random variable with Burr-10 distribution; o« = .5.
Table 3 was generated in a similar manner with o = .25 (P* = .33), and
coefficients of —6.50 and 2.00. The coefficients are changed from the
first example to retain an equal distribution of the observed variable Y;
with these parameters E[Y] = .5.

In Table 2 the average estimate of the scobit parameter a was .62
for the experiment with sample size 500. Since the standard error was
.38, this suggests that with such a small sample, we would not be able to
reject the null hypothesis that o = 1 (i.e., that logit is the correct model)

Table 2. Monte Carlo Experiment No. 2
(Results of 100 Trials with Burr-10 Distributed Disturbance [ = .5])

Logit ‘Scobit
Std. Std.

True Mean Dev. Mean Dev.
N = 500
Bo —8.50 —-7.14 0.78 -9.37 3.20
B, 2.00 1.44 0.16 2.20 0.96
o 0.50 —_ —_ 0.62 0.38
LLF —_ —116.07 —_ —114.47 —_
CorPred? 450.88 6.59 451.56 6.22
N = 2,000
Bo —8.50 -7.02 0.33 —8.56 0.76
B: 2.00 1.42 0.07 2.02 0.23
o 0.50 — —_ 0.51 0.10
LLF —_ —461.68 —_ —456.05 —_
CorPred 1,805.90 11.43 1,808.10 11.80

2CorPred is the number of correct predictions.
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Table 3. Monte Carlo Experiment No. 3
(Results of 100 Trials with Burr-10 Distributed Disturbance [ = .25])

Logit Scobit
Std. Std.

True Mean Dev. Mean Dev.
N = 500
Bo -6.50 —4.54 0.39 -9.20 5.69
B, 2.00 0.90 0.08 3.00 2.17
a 0.25 —_ — 0.23 0.11
LLF —_ —172.72 —_ —166.03 —_
CorPred® 425.45 7.61 427.82 7.84
N = 2,000
Bo -6.50 —4.53 0.16 —6.63 0.87
B: 2.00 0.90 0.03 2.04 0.37
a 0.25 —_ —_ 0.26 0.05
LLF —_ —698.24 —_ —677.75 —
CorPred 1,694.80 13.59 1,703.20 12.44

2CorPred is the number of correct predictions.

at traditional significance levels. In the trials with a sample size of 2,000,
the estimate of a was .51, and the standard error dropped to .10; thus
rejection of a = 1 is possible at very high levels of significance (p < .01).
According to Table 3, with a = .25, it is possible to reject the hypothesis
that o = 1 at traditional levels in samples of only 500: the average esti-
mated value of o is 0.23, with o, = .11. With sample size 2,000, the
estimate of a was even more precise. Thus, under these scenarios, rejec-
tion of logit as the correct model is possible.

Estimates of § and Predicted Probabilities

With both sample sizes of 500 and 2,000, scobit generated coefficient
estimates for the B’s that- are significant at traditional levels for
a = .50. With a = .25, the coefficients for sample size 500 were not
significant at traditional levels. The logit coefficients (8’s) were also statis-
tically significant for « = .50 and o = .25 at both sample sizes. However,
they are wrong: when the assumed underlying model (logistic distur-
bances) is wrong, then the maximum likelihood estimates are not con-
sistent, and we cannot make any valid statistical statements about them.
So the question becomes, does it matter that logit is used when it is not
the correct model? While o« = 1 could be rejected at the 99% level of
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significance, the substantive findings from the scobit estimates may not
differ very much from those obtained with logit (i.e., with a = 1). The
mean number of correct predictions out of the sample of 2,000 goes from
1,805.9 to 1,808.1 when using scobit instead of logit for & = .50; and it
rises from 1,694.8 to 1,703.2 for a = .25.

While neither of the above differences may be perceived as over-
whelming, the relevant consideration if we are interested in testing for
heterogeneity of respondents, or interactive effects, is the pattern of cor-
rect predictions. If logit were to overpredict for individuals with ‘‘low
values”’ of X and underpredict for individuals with ‘‘high values’ of X,
then scobit would be much preferred to it. This of course is testable. The
Monte Carlo experiments provide coefficient estimates that logit pro-
duces even though, since the disturbances are not distributed logistically,
these coefficients do not represent estimates of the true underlying model.
Nonetheless, these coefficients can be used to indicate what predicted
probabilities logit would produce er different values of X. The predicted
logit probabilities are denoted by P, where P = prob(Y; = 1|X = X)); p
was computed as 1 — F;(—X;), where B was the average logit estimate
produced by the Monte Carlo experiments and F; is the cumulative logis-
tic distribution. The predicted scobit probabilities are denoted by P,
which was computed as 1 — F¢(—X;B; o), where Fj is the Burr-10 distri-
" bution used in the scobit estimator.

Table 4 illustrates the comparison between the logit and scobit pre-
dicted probabilities for three values of a: .50, .25, and .10, and values of
X ranging from 0 to 10 in increments of 0.5. For o = .5, the predicted
probabilities for the two specifications are never too far apart. The largest
gap is reported at X = 5, where P = .52 and P = .57. For a = .25, the
differences are greater. The largest gap reported here is again for X = 5,
where P = .49 and P = .59. Finally, for o = .10 (P* = .21), there are
very large differences at low values of P, P = .11 when P = .02, and
smaller differences for P closer to .50. Figure 3.A-3.C illustrates this by
plotting the values of P and P for each of the three values of o against
X. The differences between the curves indicates the errors in the logit
predictions. For all three values of a, the curves cross twice (offer the
same prediction) and have larger gaps near P = .5 and toward the two
tails. Thus, logit underpredicts in the middle and overpredicts at the tails
in these cases.

Summary of Monte Carlo Results

Thus, when the disturbances are logistically distributed, as the logit
model assumes, scobit produces consistent, but inefficient, estimates.
The relevant questions would be how much the scobit predictions differ
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Table 4. Predictions Based on Monte Carlo Estimates
(Logit vs. Scobit Probability Estimates)

a = .50 a=.25 a = .10

P p P p P P

X Logit Scobit Logit Scobit Logit Scobit
.00 .00 .00 .01 .00 11 .02
.50 .00 .00 .02 .00 .13 .04
1.00 .00 .00 .03 .00 .15 .08
1.50 .01 00 .04 .01 18 .14
2.00 .02 .01 .06 .02 22 21
2.50 .03 .01 .09 .05 .26 28
3.00 .06 .04 .14 11 .30 35
3.50 11 .10 .20 22 35 41
4.00 21 21 28 35 40 47
4.50 35 .39 .38 .48 45 52
5.00 .52 57 .49 .59 .50 .56
5.50 .69 72 .60 .68 .56 .61
6.00 82 .83 .70 75 .61 .64
6.50 .90 .90 .79 .80 .66 .68
7.00 95 .94 .85 .85 1 i
7.50 97 .96 .90 .88 5 .74
8.00 .99 98 94 .93 .82 .78
9.00 1.00 99 97 94 .85 .80
9.50 1.00 .99 .98 .96 .88 .82
10.00 1.00 1.00 .99 97 .90 .84

from the logit predictions for different levels of skewness, as well as
how precisely it is possible to estimate the parameter a. If we could never
be sure that a # 1, then there is little to gain by running scobit rather
than logit. However, if we can reject the null hypothesis that a = 1 at
an appropriate level of significance using available data (i.e., if such a
rejection does not require unrealistically large samples), then the scobit
model may be preferred in such cases to the logit model. This might be
the case even if the logit model yielded a comparable log-likelihood statis-
tic; it would depend upon the substantive question of interest. In practice,
one could run scobit; and if one could not reject with some high level of
confidence the hypothesis that a # 1, then one would probably prefer to
use the logit estimates. The Monte Carlo results presented here suggest
that scobit may perform acceptably well for small samples and that logit
and scobit estimates will differ.



Figure 3.A-C. Scobit Predictions versus Logit Predictions

Figure 3.A: o = .50
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A Test of Substantive Implications of Different Distributions

I next test the scobit estimator against logit on a model of voting
turnout. As noted above, an earlier conclusion reached regarding the
effect of restrictive voting laws on turnout was that such laws were partic-
ularly onerous for poorly educated individuals. Using data from the 1984
Census Bureau Current Population Survey (CPS), I reestimate the model
initially estimated by Wolfinger and Rosenstone (1980), as well as the
model as modified by Nagler (1991). The model postulates that an individ-
ual’s probability of voting is a function of the individual’s age and educa-
tion, as well as the region the individual lives in (South/Non-South),
whether or not there is a gubernatorial election going on in the state, and
the number of days before the election that registration closes (closing).
Nagler modified this model to include a multiplicative interactive term
for education X closing. The point of this research is to determine
whether poorly educated individuals have particular problems with the
closing requirement and to determine which individuals are most sensi-
tive to stimuli of any sort.

Using the procedure described above of parameterizing the distribu-
tion, I test two hypotheses. First, the estimate of the skewness parameter
a reveals which voters are most sensitive to stimulus: those initially likely
to vote or those initially likely to stay home. Second, estimates of P;
based upon the correct distribution of the disturbances allow calculations
of AP/Aclosing for individuals with different levels of education; thus the
substantive question of whether poorly educated individuals or highly
educated individuals are more affected by changes in voting laws can be
answered, as well as the question of how much of this has to do with
sensitivity peculiar to changes in voting law versus changes in any factors
likely to increase turnout.

Some Empirical Results

The results of probit, logit, and scobit estimates of the full specifica-
tion, with interactive terms explicitly added for education and closing,
are reported in columns 1-6 of Table 5. As can be seen by comparing
the log-likelihood statistics, the scobit model outperforms the probit and
logit models. According to log-likelihood ratio tests, the scobit model is
preferred to the logit model at the 99% level of confidence. The percent-
age correctly predicted also goes up from 71.08 with the logit estimates
and 71.04 with the probit estimates, to 71.30 with the scobit estimates.
While the improvement in fit may be less than overwhelming, the goal is
to improve estimates of effects more so than to improve overall fit.

The estimated value of the skewness parameter a is .42; thus we can
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Table 6. Scobit and Logit Correct Predictions for Individuals
with Different Levels of Education

Unrestricted Restricted
Specification? Specification®
Percent Percent
Observed Correctly Scobit Correctly Scobit
Years of Voting Predicted Minus Predicted Minus
Education Rate Logit Scobit Logit Logit Scobit Logit
0-4 39.49 60.51 60.38 —0.13 60.44 60.44 0.00
5-7 51.72 57.76  59.40 1.64 5793 59.50 1.63
8 59.01 64.20  64.33 0.13 6446 6433 —0.13
9-11 50.31 65.44  65.65 0.21 6544 65.66 0.22
12 63.60 68.30 68.28 —0.02 68.28  68.30 0.02
1-3 college 72.85 71.20 71.89 0.69 71.18 71.90 0.72
4 college 83.35 83.35  83.35 0.00 83.35 83.35 0.00

5+ college 88.59 88.59  88.59 0.00 88.59  88.59 0.00

#Values from the unrestricted specification—includes multiplicative interactive terms.

YValues from the restricted specification—no interactive terms.

reject the hypothesis that o = 1 at the 99% level of confidence.” Using
the formula in equation (11), the o value of .42 translates into a value of
P* of .40. Using our estimate for the standard error of o, we can conclude
with 95% confidence that o € (.35, .48), and that P* € (.38, .42). Thus
the logit and probit assumption that those voters with initial probability
of .5 of voting are most sensitive to change is incorrect. Hence, the
assumption implicit in adopting logit or probit—that those individuals
with initial probability of voting of .5 are more sensitive to stimulus—is
wrong. It is individuals less likely to vote who are more sensitive to
stimulus.

This suggests testing the fit of the two models, scobit and logit, at
different levels of P;. Since based on the estimate of a and P* the logit
model appears to be misspecified, we would expect to see a pattern
of better prediction by scobit at some levels of P. Table 6 reports the

7Scobit estimates on the same model without interactive terms also yielded an estimate
of o of .42. Estimating a different specification including family income and having no
squared or interactive terms yielded an estimate for a of .59 (P* = .44); that the values
are so close is encouraging, suggesting that the scobit estimator is robust with respect to
specification errors.
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percentage of correct predictions by logit and scobit at different levels
of education—education serves as a proxy here for changing P—for
both the unrestricted (multiplicative interactive terms included) and the
restricted (no explicit interactive terms included) models. Recall that Fig-
ure 3 indicated that logit would differ from scobit most in the middle and
near the tail of the distribution. The areas in which scobit outperforms
logit are as Figure 3 would suggest. For the group with probability of
voting close to .5 (education level, 5~7), the prediction gap, the difference
between the percentage of correct predictions by scobit and logit, is 1.64
and 1.63 in the respective sets of models. The gap decreases as the proba-
bility of members of each group voting drops and as the probability of
members of each group voting rises, but the gap then increases again for
those individuals with probability of voting near .73 (education level, 1-3
years of college). The probabilities converge again at the upper tails. The
relatively small difference in correct prediction rates is also suggested by
Figure 3.A: with a = .5, the two curves are fairly close. Since & here is
.42, we would not expect the curves to diverge very much.

The question now is how the scobit and logit models differ in predic-
tions of effect of changes in independent variables. The first two columns
of Table 7 report the effect estimated by the unrestricted logit and scobit

Table 7. Scobit and Logit Estimates for the Effect of Eliminating the Closing
Requirement for Individuals with Different Levels of Education

Unrestricted Restricted

Specification® Specification®
Years of Education Logit Scobit Logit Scobit
0-4 .022 .028 .081 .094
5-7 .044 .046 .081 .087
8 .053 .050 .069 .069
9-11 .066 .065 .070 .072
12 .067 ) .067 .064 .064
1-3 college .064 .063 .058 .055
4 college .044 .041 .040 .033
5+ college .023 .024 .022 .018

Note: Probability of voting is calculated for each individual, then closing is set to zero, and
a second, hypothetical probability is calculated. Table entries are the mean differences
between these two numbers for each education category.

2Values from the unrestricted specification—includes multiplicative interactive terms.

bValues from the restricted specification—no interactive terms.
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models of eliminating the closing requirement. A predicted probability of -
voting was calculated for each individual. Then, a second hypothetical
probability was calculated with the value of closing set to zero. The
difference between these two numbers was then averaged over all individ-
uals in each education group and reflects the effect of eliminating the
closing requirement (Wolfinger and Rosenstone 1980). The scobit model
predicts a .028 change in the probability of voting for the group with the
lowest level of education (0-4 years), while logit predicts a change of
only .022. The difference in the two predictions is caused by the differing
shapes of the scobit and logit response curves. Since the group with the
lowest level of education has a voting rate of 39.34%, and P* = .40, we
would expect scobit to produce larger estimates than logit for this group:
this is the group for whom the scobit curve is steepest. I now turn to the
interactive effects of education and closing.

Estimates of Variable-Specific Interactive Effects

The shape of the response curve as revealed by the estimates for o
shows that, ceteris paribus, poorly educated individuals will be more
sensitive to stimuli, since they will be closer to P*. However, beyond
the interaction explicit in the functional form between all variables, we
might have theoretical reason to postulate a ‘‘variable-specific’’ interac-
tion between some combination of independent variables. In the case of
voter turnout, Wolfinger and Rosenstone (1980) argued that voting laws
would be particularly difficult for poorly educated individuals to deal
with. If so, we would expect estimates of AP/Aclosing for poorly edu-
cated persons to be augmented when including such variable-specific in-
teraction in the model. The variable-specific interaction should add to the
“‘heightened sensitivity’’ to stimulus of poorly educated people that we
are able to measure.

The basic idea behind interactive effects is straightforward.® Con-
sider the variables x, and x;. We say that there are interactive effects
between x; and x, if 3P,/dx, is a function of x;. Now obviously in nonlinear
models such as those being considered, dP;/dx, is always a function of
x;, since even in the simplest specification dP;/dx, = f(—X;B)B;, and
X;B includes x;. Generally, if 9P/ox, = ['(x,, P;), where I' is any function,
and p(x;, P;) # 0, then we have interaction imposed by functional form
between x; and x;. However, specifying the interactive terms in the un-
derlying linear form allows for a more precise description of the interac-
tion. If adding the variable x;;, = g(x;, x;) to the set of variables x, . . .,

8See Jaccard, Turrisi, and Wan (1990) for further discussion of interaction in linear
models.
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xg leads to an improvement in the model, then I would argue that we
have ‘‘variable-specific’’ interaction between x; and x;, as opposed to
interaction imposed between all the variables by the functional form of
the model. Including the interactive term g(x;, x;) in the underlying linear
form allows for oP,/dx, to depend upon values of x; beyond their unpact
upon the sum X,B. Consider the case where x; k= g(xk, X;) = Xx; X x; is
included in the underlying model. Then, equation (5) becomes:

P,
S A= X BBy + Bt ©
Xk

To evaluate this, it is necessary to evaluate both the linear and nonlinear
terms.

A simple test for the existence of, though not the direction of, ‘‘vari
able-specific”’ interactive effects is a log-likelihood ratio test comparing
the unrestricted and restricted models, where the restricted model omits

g(xy, x;). In the present case, two variables are omitted: closing X educa-
tion and closing x education®. Results of the restricted scobit model are
presented in columns 7 and 8 of Table 5. According to the log-likelihood
statistics, we can reject the restricted scobit model versus the un-
restricted scobit model with 99% confidence. However, the difference in
values of the log-likelihoods (55,282 versus 55,289) is small given the
number of observations, and the percentage of correct predictions by
the two models is identical (71.30). These things do not suggest a very
meaningful substantive difference between the two models. Looking
at the coefficients of the specific interactive terms in the model, we can
see that they do not individually reach traditional levels of significance
(t = —1.45and ¢t = 0.59).

Comparing the estimates of the unrestricted and restricted scobit
models tells us what effect the variable-specific interaction has. The re-
stricted model predicts the largest effect (AP = .094) for the least-
educated group, and the smallest effect (AP = .018) for the most-
educated group. This is a ratio of over 5:1 for the magnitude of the
effects. Alternatively, once the multiplicative interactive terms are
added, the unrestricted scobit model predicts the largest change for high
school graduates (AP = .067), with smaller changes at both extremes
(AP = .028 and AP = .024). Thus, the inclusion of variable-specific
interaction into the model attenuates the tendency of poorly educated
individuals to be sensitive to stimuli.

This attenuation effect can also be seen by examining the effect of
changes in closing on the underlying variable Y*. Using the coefficient
estimates in Table 5, we have:
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Y+

aclosing deducation = —.,0055 + .0004 X education. (10)

Since the variable education is bounded between one and eight, this is
always negative. Hence, as education increases, the effect of increasing
the closing date on Y* decreases (i.e., becomes more negative); hence,
changes in closing have more of an effect on Y* for more highly educated
persons. This analysis based on the scobit coefficients is consistent with
Nagler’s analysis of probit estimates (1991).

Thus, we see that attempts to find variable-specific interactive effects
between education and closing remain futile. The interactive variables
are not individually significant; their effect on the underlying variable
Y* is perversely signed; and a restricted model without variable-specific
interaction compared to an unrestricted model with variable-specific in-
teraction between education and closing produces estimates of effects
indicating that the natural tendency of poorly educated individuals to be
highly sensitive to stimulus is attenuated by the variable-specific interac-
tion. Individuals with lower levels of education are more sensitive to
changes in the closing date than individuals with higher levels of educa-
tion. However, as we have seen, this is because of the greater sensitivity
of poorly educated individuals to any stimuli; it is not because of a pecu-
liar link between education and ability to register early.

Conclusion

I began by identifying a limitation of probit and logit estimators. A
technical assumption implicit in the models, that the distribution of the
disturbances is symmetric about F(z) = .5, has a serious substantive
implication: that individuals with P; = .5 are most sensitive to changes
in independent variables. I attempted to explain why we have important
reasons to want to test this substantive assumption. The scobit, or more
descriptively ‘‘skewed-logit,”’ estimator developed here overcomes the
limitations of probit and logit and offers a means to test this assumption.
Monte Carlo results have shown that the scobit estimator can be used
even when logit is applicable. And estimates based on actual data have
shown that the substantive assumption in question is violated in the case
of voter turnout.

It would, however, be a mistake to generalize this result to other
substantive cases. The fact that respondents with an initial reported prob-
ability of voting of .40 are most sensitive to changes in stimuli does not
suggest that individuals with a high or low initial probability of voting
Democratic are those most sensitive to stimuli. That the one example
considered here generated a P* close to .4 does not suggest that o = .42
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represents the true model for every other binary-choice phenomenon in
the real world. It remains to be seen whether this would hold in other
cases such as candidate choice. The true model in other cases may look
more like logit, or may suggest that logit is even more inappropriate.
Each substantive case would represent a different empirical question, all
of which are beyond the scope of this paper.

As Wolfinger and Rosenstone (1980) initially argued, individuals with
less education will be more affected by changes in registration laws. How-
ever, this is not because of a particular link between education and reg-
istering early; it is because individuals with less education are more
sensitive to any changes likely to increase turnout. In fact, Wolfinger and
Rosenstone were even ‘‘more’’ correct than they realized, since the
scobit estimates indicated that logit and probit will underestimate the
sensitivity to stimulus of persons with extremely low initial probabilities
of voting.

Thus, scobit is proved to be a useful estimator when we are explicitly
concerned with heterogeneity of respondents and interaction effects. It
is useful when, for substantive reasons, we are unwilling to make the
assumptions of the logit and probit models. Given the closeness of logit
and scobit predictions, a researcher not especially interested in questions
of interaction between variables or heterogeneity of respondents would
probably not feel compelled to compute scobit estimates. However, 1
argue that scobit is an essential estimator if we want to test for heteroge-
neity of respondents and interactive effects when dealing with dichoto-
mous dependent variables. The purpose of empirical analysis is to test
hypotheses, and if the proof of our hypothesis is imposed upon our results
by our statistical model then no test is being conducted.

Manuscript submitted 23 November 1992
Final manuscript received 25 May 1993

APPENDIX A
Proof of Proposition 1

Define P,- as dP;/dz, and define P* as the value of P that maximizes P,-. The goal here
is to solve for P* in terms of o, and then show that choosing an appropriate value of o will
enable P* to take on any value within the range (0, 1). Substituting the Burr-10 distribution
into equation (5) shows that P* maximizes:

b odll=(+e)™] an
9z

Or P* maximizes:

P = a(e)( + e9)~@+D, (12)



SCOBIT 253

We can solve for the value z* where P is maximized by differentiating equation (8) with
respect to z and setting the result equal to zero. Since f(—z) is concave downward V z,
satisfying the first-order condition will guarantee that we have a maximum. This gives the
first-order condition:

Z—}z)" = a(e)(l + e)~@*I(1 - ae?) 13

=0.
A maximum is found where:
1-aet*=0,

or
= 1og(l) a4
o

This is the value of z where (Pila) is maximized V «. Substituting this into equation (4),
we can express P* in terms of a as:

P*=1—<1+§) as)

Hence P* — 0 as a — 0; but in the limit we can see that P* — (1 — (1/e)), or approximately
.63, as a — «, Hence, V k € (0, .63) 3 a s.t. P* = k. However, V k > .63, there does not
exist a s.t. P* = k. While this distribution would not satisfy the criteria of being able to
generate any P* € (0, 1), a recoding technique is available that would allow the distribution
to be viable for P* > .63.

Consider the case where P* > .63. If P* = prob(Y; = 1) > .63, then prob(Y; = 0)
= (1 — P*) < .37. This suggests recoding the dependent variable to reverse the 0/1 coding
and recalculating the parameter estimates. Define ¥, as follows: ¥; = 0if ¥; = 1; ¥; = 1 if
Y; = 0. Now define P; = prob(¥; = 1) = prob(¥; = 0) = 1 — prob(Y; = 1) = 1 — P,.
Thus, the value of P where 9P/dz is maximized (P*) will just be 1 — P}. Since P} > .67,
it follows that 1 — P} < .37, thus P* < .37. Hence, with the data coded in this manner 3
a s.t. P* € (0, 1); and the Burr-10 distribution could be used when P* € (1/e, 1). QED

Since the coding of data as zero or one is an arbitrary decision regarding our classifica-
tion of events, the ‘‘recoding’’ involves no loss of generality. Following the coding change,
we would simply have to be precise as to the ‘‘new’’ meaning of our dependent variable.
Thus, determining the correct distribution for P* € (0, 1) would require running two sets
of maximum likelihood calculations. However, aside from computational and coding com-
plexity, there is no loss of efficiency.

APPENDIX B
Likelihood Function for the Burr-10 Distribution

Following the derivation of the general model for dichotomous dependent variables,
the likelihood function is defined as:

L =TF(-Xp)"1 - F(-X;B)" (16)
The log of the likelihood function is then given by:
LogL = 2(1 - y)log[F(—X,B)] + Zy,log[l — F(-X;B)], an
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where F represents the Burr-10 distribution, or:
F(—XB) = (1 + e¥iP)=2, (18)
The gradient is given by the vector:

dlogL
;:?i = ((y/( = F(-X;B;))) — (1 — y)/F(—X;B; 0)) X fo(—X;B; ) X xy, 19
and
dlog L
Fy (-y /(1 = F(-X;B; ) + (1 — y)/F(—X;B; 0)) X f,(—X;B; ), 20)
where
F(-X.B;a)
fis(_X,'B;ot) = -a—%_a_)
1
= —axeXifx(1+ eXiB)-(mH)xki
and
L _9F(-XB;0)
f;(_XiB’ C!.) = "'_aa

(22)
= —log[l + e¥P] X F(—X,B;0)

APPENDIX C
SHAZAM Code for Scobit Estimation

The following SHAZAM code can be used to generate scobit estimates for a model
with two independent variables (x1 and x2) and a binary dependent variable y:

nl 1/ncoef=4logden

eq (1-y)*log((1+exp(b0+b1*x1+b2*x2))**(— 1*alpha)) &
+y*log(l—(1+exp(b0+bl*x1+b2*x2))**(—1*alpha))
coefb01bl1b21alphal

end

Note: The symbol ‘“**’ denotes exponentiation in SHAZAM; the symbol “‘&’’ denotes
that the equation continues to the next line.
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