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Interpretation of econometric models.

Structural: structure of the model is valid, parameters are
unknown, likelihood base analysis (Maximum Likelihood
Estimation, Bayesian estimators)
Semiparametric: part of the probabilistic model is left
unspecified (OLS, Generalised Method of Moments (GMM),
semiparametric estimators)
Quasi-structural approach: model is treated as an
approximation rather than truth (quasi-likelihood function,
quasi-MLE, and quasi-likelihood)
Calibration approach: treat the models as approximations,
rejects statistical methods of estimation, uses ad hoc methods
to fit models
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Types of empirical data.

Experimental: values of explanatory variables are determined
by researcher and therefore can be treated as nonrandom
Observational: neither explained nor explanatory variables are
under control of researcher
Most of the empirical data in economics is observational
It is difficult to infer the causal mechanism from observational
data as we cannot manipulate one variable to see the effect of
this changes on other variables.
What we are observing in practice are co-movements
(correlations) of the observed variables
However: co-movements (correlations) do not imply causality!
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Standard data structures.

Cross-section: observations independent, large number of
observations

Example: Labor Force Survey (LFS)
Time-series: serial dependence, sampling freqency often low
(annual, quarterly), number of observations low

Example: GDP, interest rates
Panel: for individual units, data is collected for several time
periods, combine characteristics of the cross-section and
time-series data

Example: Panel Study of Income Dynamics (PSID)
Clustered: observation within clusters dependent but clusters
independent

household data
Spatial: observations dependent but nature of dependence
known and related to distance

Example: regional data
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The Probability approach in econometrics

Deterministic models cannot precisely describe empirical data
It is obvious that there are random factors influencing actions
of economic agents
On the other hand economic agents when making decisions
are taking into account random factors
Therefore models used in analysis of empirical data should
explicitly include random elements
Models used in the analysis of the data should be probabilistic
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Distributions and unconditional expectations
Cumulative distribution function

F (u) = P [wage < u]

Density function
f (u) = d

du F (u)

Median
F (m) = 1

2
Expectation (mean)

E [Y ] =
∞∑

j=1
τjP (Y = τj)

E [Y ] =
ˆ ∞

−∞
yf (y) dy
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Distribution of wages
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Figure 2.1: Wage Distribution and Density. All Full-time U.S. Workers

Source: Hansen (2022)
Sample of 50,742 full-time non-military wage-earners reported
in the March 2009 Current Population Survey
Notice log (wage) has distribution much closer to normal
distribution
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Conditional expectation function (CEF)
Expected values for subgroups

E [ log (wage)| gender = man] = 3.05

E [ log (wage)| gender = woman] = 2.81

log (wage) differential

E [ log (wage)| gender = man]
−E [ log (wage)| gender = woman] = 0.24

log (wage) differential can be interpreted percentage
difference between wages of women and men.
Indeed for y1

y2
close to 1:

log (y1) − log (y2) = log
(y1

y2

)
≈ y1

y2
− 1 = y1 − y2

y2
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Average wages by race and gender

Table 2.1: Mean Log Wages by Gender and Race

men women
white 3.07 2.82
Black 2.86 2.73
other 3.03 2.86

Source: Hansen (2022)
Conditional means with given race and gender e.g.:

E [ log (wage)| gender = man, race = Black] = 3.05

We describe 50,742 with just 6 numbers
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Conditional expectation function (CEF)
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Figure 2.3: Expected Log Wage as a Function of Years of Education

Source: Hansen (2022)
Wage depends on number of years of education e.g.:
E [ log(wage)| gender = man, race = white, education = 12] = 2.84
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Conditional expectation function (CEF)
Generic notation for conditional expectations

E [Y | X1 = x1, X2 = x2, . . . , Xk = xk ] = m (x1, x2, . . . , xk)

or
E [Y | X = x ] = m (x)

where X=(x1, . . . , xk)′ is a column vector of conditioning
variables
For given joint density f (y , x) marginal density of x is

fX (x) =
ˆ ∞

−∞
f (y , x) dx

Conditional density for all x such that fX (x) > 0 is defined as

fY |X (y | x) = f (y , x)
fX (x)
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Conditional expectation function (CEF)

Conditional expectation

m (x) = E [Y | X = x ] =
ˆ ∞

−∞
yfY |X (y | x) dy

Intuitively E [Y | X = x ] is the expected value of Y for
idealized sub-population in which X = x
m (x) is also known as regression function
Variables included in vector X are called regressors
The process of finding and interpreting m (x) is known as
regression analysis
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Conditional expectation function (CEF)

CEF is widely used in econometric analysis because it can be
intepreted as prediction of Y given value of X
Moreover it can be shown that in some sense CEF is the best
prediction
Some properties of predictors based on CEF are easy to derive
It is not only used in econometrics but also in the economic
theory: Rational Expactations Theory (RE)
In the case when m (X ) is linear in X it is easy to estimate of
m (X )
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Properties of conditional expectations

Theorem
Simple Law of Iterated Expectations
If E |Y | < ∞ then for any random vector X, E [E [Y | X ]] = E [Y ] .

Theorem
Law of Iterated Expectations
If E |Y | < ∞ then for any random vectors X1 and X 2 ,
E [E [Y | X1, X2]| X1] = E [Y | X1] .

Theorem
Conditioning Theorem
If E |Y | < ∞ then E [g (X ) Y | X ] = g (X )E [Y | X ] . If in addition
E [g (X )] < ∞ then E [g (X ) Y ] = E [g (X )E [Y | X ]].
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CEF error

Define the difference between the observation for Y and
prediction m (X ) = E [Y | X ] as prediction error e

e = Y − m (X )

By definition
Y = m (X ) + e

Then

E [e| X ] =E [ (Y − m (X ))| X ]
=E [ (Y )| X ] − E [m (X )| X ]
=m (X ) − m (X ) = 0

Using Simple Law of Iterated Expectations

E [e] = E [E (e| X )] = E (0) = 0
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Regression variance

Dispersion of e is related to precision of prediction of Y
obtained from m (x)
The standard measure of dispersion is variance

σ2 = var [e] = E
[
(e − E [e])2

]
= E

[
e2

]
f E

[
Y 2]

< ∞ then σ2 < ∞.
If E

[
Y 2]

< ∞ then

var [Y ] ≥ var [Y − E [Y |X1]] ≥ var [Y − E [Y |X1, X2]] .

Adding the regressors always reduces regression variance!
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Best predictor

One of the aims of the regression analysis is explain (predict)
the changes of Y with the changes X
Is the conditional expectation a good way to make predictions
about Y ?

Theorem
Conditional Expectation as Best Predictor
If E E

[
Y 2]

< ∞ , then for any predictor g (X ),

E
[
(Y − g (X ))2

]
≥ E

[
(Y − m (X ))2

]
where m (X ) = E [Y | X ].

Regression function m (X ) produces the best predictions of Y !

Jerzy Mycielski Advanced Econometrics



Conditional variance and conditional standard error
If E

[
e2]

< ∞ , the conditional variance of the regression error
e

σ2 (x) = var [e| X = x ] = E
[
e2

∣∣∣ X = x
]

.
The conditional variance of e treated as a random variable is
var [e| X ] = σ2 (X ).
Conditional standard error σ2 (x) =

√
σ2 (x)

Variance decomposition: if E
[
X 2]

< ∞ then

var [X ] = E [var [X | W ]] + var [E [X | W ]] .

As E [e| X ] = 0 then var [e] = E [var [e| X ]]
The error is homoskedastic if σ2 (x) = σ2 does not depend on
x
Homoscedasticity is an exception rather than a rule - in most
empirical models error is heteroskedastic
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Regression derivative (marginal effect) and ceteris paribus
assumption

Define the following measure of the reaction of the m (x) to
changes in x1:

∇1m (x) =
{

∂m(x1,...,xk)
∂x1

, if X1 is continuous
m(1, ..., xk) − m(0, x2, ..., xk), if X1 is binary

Using the same definition for all elements of x we can define

∇m (x) =

 ∇1m (x)
...

∇km (x)


Notice that ∇1m (x) is defined as partial derivative of m (x),
therefore it measures the change of m (x) if x1 changes but all
other variables are kept constant (ceteris paribus)
This measure make possible to disentangle the influence of x1
from the influence of other regressors (colliders and
mediators)!
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Linear CEF model

Assume that CEF is the following function

m(x) = x1β1 + x2β2 + · · · + xkβk−1 + βk = x ′β.

βk is known as constant term or intercept

x =

 X1
...

Xk

, β =

 β1
...

βk


Y =X ′β + e

E (e| X ) =0

Additionaly homoscedasticity assumption var (e| X ) = σ2 is
sametimes added
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Linear CEF with nonlinear effects, with dummy variables
Quadratic regression

m (x1, x2) = x1β2 + x2β2 + x2
1 β3 + x2

2 β4 + x1x2β5 + β6

It is nonlinear in the regressors x1, x2 but it is linear in the
coefficients.
Regression derivative w.r.t. x1

∂m (x1, x2)
∂x1

= β2 + 2x1β3 + x2β5

β5 is related to so called interaction effect
Qualitative variables are coded using binary (dummy) variables{

X1 = 1 if gender = man
X1 = 0 if gender = woman.

If qualitative variable has more than s > 2 possible values we
use s − 1 dummy variables to represent it
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Best linear predictor
Assume E

[
Y 2]

< ∞, E ∥X∥2 < ∞, E [XX ′] is positive
semidefinite (invertible)
Linear Predictor of Y given X is P [Y | X ] = X ′β where β
minimizes the mean squared prediction error:

S (β) = E
[(

Y − X ′β
)2]

.

Solving this minimization problem gives the following formula
for β (Linear Projection Coefficient)

β =
(
E

[
XX ′])−1 E [XY ]

Then the Best Linear Predictor (Linear Projection) is given by

P [Y | X ] = X ′ (
E

[
XX ′])−1 E [XY ]

In the linear projection model Y = X ′β + α + e, µY = E (Y ),
µX = E (x)

α =µY − µX β

β =var [X ]−1 cov (X , Y ) .
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Wage, spline and polynomial projections
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Figure 2.6: Projections of log(wage) onto education and experience

Source: Hansen (2022)
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Omitted variable bias

Consider the following regression model

Y = X ′
1β1 + X ′

2β2 + e

Make Linear Projection of Ẏ on X1 only
In such a case Linear Projection Coefficient is

γ1 =E
[
X1X ′

1

]−1
E [X1Y ]

=E
[
X1X ′

1

]−1
E

[
X1

(
X ′

1β1 + X ′
2β2 + e

)]
=β1 + E

[
X1X ′

1

]−1
E

[
X1X ′

2

]
β2 = β1 + Γ12β2

Generally speaking γ1 = β1 + Γ12β2 ̸= β1, the coefficient is
biased estimate of β1!
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Misspecified model
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Figure 2.7: Conditional Mean and Two Linear Projections

Source: Hansen (2022)
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CEF and Causal effect
Model

Y = h (D, X , U)
X are observable factors, U unobservable factors
Causal effect of D on Y is

C (X , U) = Y (1) − Y (0) = h (1, X , U) − h (0, X , U)

interpreted as change in Y due to treatment while holding U
constant
The conditional average causal effect o of D on Y is

ACE (x) = E [C (X , U)| X = x ] =
ˆ
Rl

C(x , u)f (u| x)du

where f (u) is the density of U.
The unconditional average causal effect of D on Y is

ACE = E [C (X , U)] =
ˆ

ACE (x)f (x)dx
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Conditional Independence Assumption (CIA)
We say that variables U and D are conditionally independent
if conditional on X the random variables D and U are
statistically independent

f (u| D, X ) = f (u|X )

In such a case

m (d , x) =E [Y | D = d , X = x ] = E [h (d , x , U)| D = d , X = x ]

=
ˆ

h (d , x , u) f (u| d , x) du. =
ˆ

h (d , x , u) f (u| x) du.

Therefore

∇m (d , x) =m (1, x) − m (0, x)

=
ˆ

h (1, x , u) f (u| x) du −
ˆ

h (0, x , u) f (u| x) du

=C (x , u) f (u| x) du = ACE (x)

CIA implies ∇m (d , x) = ACE (x) !
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Moment estimators
Sample is the set {(Yi , Xi) : i = 1, ..., n} of n realisations of
the random variables (Y , X )
We often assume that elements of the sample are identically
distributed that is they are draws from common distribution F
In econometric theory we refer to the underlying common
distribution F as the population or Data Generating Prosess
(DGP)
The simplest estimators are based on moments that is by
replacing population moments by sample moments
E.g. expected value µ = and variance σ2 of Y can be
estimated as follows:

µ̂ =
∑n

i=1 Yi
n , σ̂2 = 1

n

n∑
i=1

Y 2
i −

[
1
n

n∑
i=1

Yi

]2

=
∑n

i=1 (Yi − µ̂)2

n

as var (Y ) = E
(
Y 2)

− [E (Y )]2
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Linear CEF estimation

Replacing the variance of CEF error with sample variance:

Ŝ(β) = 1
n

n∑
i=1

(
Yi − X ′

i β
)2

= 1
nSSE (β)

where SSE (β) is called the sum of squared errors function.
We define the least squares estimator β̂ as the minimizer of
Ŝ(β)
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Sum of Squared Error, one regressor
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Figure 3.1: Regression With One Regressor

Source: Hansen (2022)
Jerzy Mycielski Advanced Econometrics



Sum of Squared Error, two regressors
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Figure 3.2: Regression with Two Variables

Source: Hansen (2022)
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